Studi Perbandingan Sifat Struktur dan Dinamika Bentuk Apo dan Holo dari FKBP12 dan Mip dengan Menggunakan Simulasi Dinamika Molekul

Elisabeth Catherine Widjajakusuma, Monica Frederica, Kornelius Kaweono, Arkenjela Shea, Gracia De Sales Lodhu Jawa, Yohanes Aliandra Kelan, Ajeng Indah, Firli An’nisavia, Margaretha Yuliani Br Simatupang, Fildzahdina Fildzahdina, Dwi Vita Setiyoningsih

Abstract


Interaksi protein danligan pada sisi pengikatan merupakan topik penting dalam desain obat dan proses prediksi fungsi protein. FKBP12 dan Mip(macrophage infectivity potentiator)termasuk dalam keluarga protein FKBP dengan sisi pengikatan yang kemiripannya sangat tinggi. Oleh karena itu untuk mendapatkan ligan yang selektif tidaklah mudah. Tujuan penelitian ini untuk membandingkan sifat struktur dan dinamis dari FKBP12 dan Mip dalam bentuk holo (membentuk kompleks dengan suatu ligan) dan bentuk apo (tidak terikat dengan ligan) dengan menggunakan simulasi dinamika molekul selama 40 ns dengan penambahan energi potensial selama 10 ns. Penggantian ligan rapamycin dengan ligan yang lebih kecil, yaitu turunan asam pipecolat, menyebabkan perubahan strukturpada FKBP12 dibandingkan Mip terutama pada asam amino Q81/E54, V82/F55, I83/I56, W86/W59, Y109/Y82, P117/H87, dan I118/I90.Hal ini memberikan informasi untuk pengembangan ligan yang selektif.

Save to Mendeley


Keywords


FKBP12; Mip (macrophage infectivity potentiator); Legionella pneumophila; simulasi dinamika molekul; potensial flooding

Full Text:

PDF

References


Abraham, M.J., van der Spoel, D., Lindahl, E., dan Hess, B., 2018, GROMACS User Manual version 2018.2,www.gromacs.org.

Banaszynski, L.A., Liu, C.W., dan Wandless, T.J., 2005, Characterization of the FKBP, rapamycin, FRB ternary complex, Journal of American Chemical Society, 127:4715-4721.

BIOVIA, 2020, Discovery Studio Visualizer. Dassault Systèmes. https://3ds.com/products-services/biovia/products.

Bussi, G., Donadio, D., dan Parinello, M., 2007, Canonical sampling through velocity rescaling, Journal of Chemical Physics, 126:014101.

Case, D., Ben-Shalom, I., Brozell, S., Cerutti, D., Cheatham, T. I., Cruzeiro, V., Darden, T., Duke, R., Ghoreishi, D., Gilson, M. K., Gohlke, H., Goetz, A. W., Greene, D., Harris, R., Homeyer, N., Huang, Y., Izadi, S., Kovalenko, A., Kurtzman, T., Lee, T. S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R.,

Mermelstein, D. J., Merz, K. M., Miao, Y., Monard, G., Nguyen, C., Nguyen, H., Omelyan, I., Onufriev, A., Pan, F., Qi, R., Roe, D. R., Roitberg, A., Sagui, C., Schott-Verdugo, S., Shen, J., Simmerling, C. L., Smith, J., Salomon-Ferrer, R., Swails, J., Walker, R.C., Wang, J., Wei, H., Wolf, R. M., Wu, X., Xiao, L., York, D.M., dan Kollman, P.A., 2018, Amber 2018, University of California, San Francisco.

Ceymann, A., Horstmann, M., Ehses, P., Schweimer, K., Paschke, A.-K., Steinert, M., dan Faber, C., 2008, Solution structure of the Legionella pneumophila Mip-rapamycin complex, BMC Structural Biology, 8:1-12.

Ceymann, A., Horstmann, M., Ehses, P., Schweimer, K., Steinert, M., Kamphausen, T., Fischer, G., Hacker, J., Rosch, P., dan Faber, C., 2006, Domain motion of the Mip protein from Legionella pneumophila, Biochemistry, 45:12303-12311.

Christner, C., Wyrwa, R., Marsch, S., Kullertz, G., Thiericke, R., Grabley, S., Schumann, D., dan Fischer, G., 1999, Synthesis and cytotoxic evaluation of cycloheximide derivatives as potential inhibitors of FKBP12 with neuroregenerative properties, Journal of Medicinal Chemistry, 42:3615-3622.

da Silva, A.S. dan Vranken, W., 2012, ACPYPE - AnteChamber PYthon Parser interfacE, BMC Research Notes, 5:367. Darden, T., York, D., edersen, L., 1993, Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems, Journal of Chemical Physics, 98:10089-10092.

Dunyak, B.M. dan Gestwicki, J.E., 2016, Peptidyl-proline isomerases (PPIases): Target for natural products and natural product-inspired compounds, Journal of Medicinal Chemistry, 59:9622-9644.

Ghartey-Kwansah, G., Li, Z., Feng, R., Wang, L., Zhou, X., Chen, F. Z., Xu, M. M., Jones, O., Mu, Y., Chen, S., Bryant, J., Isaacs, W. B., Ma, J., dan Xu, X., 2018, Comparative analysis of FKBP family protein: evaluation, structure, and function in mammals and Drosophila melanogaster, BMC Developmental Biology, 18:1-12.

Griffith, J. P., Kim, J. L., Kim, E. E., Sintchak, M. D., Thomson, J. A., Fitzgibbon, M. J., Fleming, M. A., Caron, P. R., Hsiao, K., dan Navia, M. A., 1995, X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex, Cell, 82:507-522.

Haug, E., Arora, J. S., dan Matsui, K., 1976, A steepest-descent method for optimization of mechanical systems, Journal of Optimization Theory and Applications, 19:401-424.

Hess, B., Bekker, H., Berendsen, H. J. C., dan Fraaije, J. G. E. M., 1997, LINCS: A linear constraint solver for molecular simulations, Journal of Computational Chemistry, 18:1463-1472.

Grubmüller, H., 1995, Predicting slow structural transitions in macromolecular systems: conformational flooding, Physical Review E, 52:2893-2906.

Humphrey, W., Dalke, A., dan Schulten, K., 1996, VMD: visual molecular dynamics, Journal of Molecular Graphics, 14:33-38.

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein, M.L., 1983, Comparison of simple potential functions for simulating liquid water, Journal of Chemical Physics, 79:926-935.

Juli, C., Sippel, M., Jaeger, J., Thiele, A., Weiwad, M., Schweimer, K., Roesch, P., Steinert, M., Sotriffer, C. A., dan Holzgrabe, U., 2011, Pipecolic acid derivatives as small-molecule inhibitors of the Legionella MIP protein, Journal of Medicinal Chemistry, 54:277-283.

Kang, C. B., Ye, H., Dhe-Paganon, S., dan Yoon, H. S., 2008, FKBP family protein: Immunophilins with versatile biological functions, Neurosignals, 16:318-325.

Kolos, J. M., Voll, A. M., Bauder, M., dan Hausch, F., 2018, FKBP Ligands—Where We Are and Where to Go? Frontiers in Pharmacolology, 9:1425.

Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., dan Shaw, D. E., 2010, Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins: Structure, Function and Bioinformatics. 78:1950-1958.

Michnick, S.W., Rosen, M.K., Wandless, T.J., Karplus, M., Schreiber, S.L., 1991, Solution structure of FKBP, a rotamase enzyme and receptor for FK506 and rapamycin, Science, 252:836-839.

Parrinello, M., dan Rahman, A., 1981, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, 52:7182-7190.

Rasch, J., Ünal, C. M., Klages, A., Karsli, Ü., Heinsohn, N., Brouwer, R. M. H. J., Richter, M., Dellmann, A., dan Steinert, M., 2019, Peptidyl-prolyl-cis/trans-isomerases Mip and PpiB of Legionella pneumophila contribute to surface translocation, growth at suboptimal temperature, and infection, Infection and Immunity, 87:1-12.

Ribolli-Tunnicliffe, A., Konig, B., Jessen, S., Weiss, M. S., Rahfeld, J., Hacker, J., Fischer, G., dan Hilgenfeld, R., 2001, Crystal structure of Mip, a prolylisomerase from Legionella pneumophila, Natural Structural and Molecular Biology, 8:7790783.

Szep, S., Park, S., Boder, E. T., Duyne, G. D. V., dan Saven, J. G., 2009, Structural coupling between FKBP12 and buried water, Proteins, 74:603-611.

Tong, M., dan Jiang, Y., 2015, FK506-binding proteins and their diverse functions, Current Molecular Pharmacology, 9:48-65.

van-Duyne, G. D., Standaert, R. F., Schreiber, S. L., dan Clardy, J., 1991, Atomic structure of rapamycin human immunophilin FKBP-12 complex, Journal of the American Chemical Society, 113:7433-7434.

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., dan Case, D. A., 2004, Development and testing of a general amber force field, Journal of Computational Chemistry, 25:1157-1174.




DOI: https://doi.org/10.33508/jfst.v9i1.4059