Adsorption of Methylene Blue Dye Using Guaran/TiO2 Hydrogel
Abstract
Keywords
Full Text:
PDFReferences
A. Panhwar, A.S. Jatoi, S.A. Mazari, A. Kandhro, U. Rashid, S. Qaisar, Water resources contamination and health hazards by textile industry effluent and glance at treatment techniques: A review, Waste Management Bulletin 1 (2024) 158-163. https://doi.org/10.1016/j.wmb.2023.09.002.
P.O. Oladoye, T.O. Ajiboye, E.O. Omotola, O.J. Oyewola, Methylene blue dye: Toxicity and potential elimination technology from wastewater, Results in Engineering 16 (2022) 100678. https://doi.org/10.1016/j.rineng.2022.100678.
B. Lellis, C.Z. Fvaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnology Research and Innovation 3 (2019) 275-290. https://doi.org/10.1016/j.biori.2019.09.001.
R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.-G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, J. Sun, A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicology and Environmental Safety 231 (2022) 113160. https://doi.org/10.1016/j.ecoenv.2021.113160.
S.M. Elsaeed, E.G. Zaki, W.A.E. Omar, A.A. Soliman, A.M. Attia, Guar Gum-Based Hydrogels as Potent Green Polymers for Enhanced Oil Recovery in High-Salinity Reservoirs, ACS Omega 6 (2021) 23421-23431. https://doi.org/10.1021/acsomega.1c03352.
C. Feng, J. Xi, Q. Gao, S. Cheng, M. Shen, Guar Gum-based multifunctional hydrogels with high sensitivity and negligible hysteresis for wearable electronics, Colloids and Surfaces A: Physicochemical and Engineering Aspects 677 (2023) 132409. https://doi.org/10.1016/j.colsurfa.2023.132409.
D. Mudgil, S. Barak, B.S. Khatkar, Guar gum: processing, properties and food applicationsA Review, Journal of Food Science and Technology 51 (2014) 409-418. https://doi.org/10.1007/s13197-011-0522-x.
C. Baruah, J.K. Sarmah, Guar gum-based hydrogel and hydrogel nanocomposites for biomedical applications, in: S. Jana and S. Jana (Eds.), Micro- and Nanoengineered Gum-Based Biomaterials for Drug Delivery and Biomedical Applications, Elsevier, 2022, pp. 473-492.
L. Yang, L. Bao, T. Dong, H. Xie, X. Wang, H. Wang, J. Wu, C. Hao, Adsorption properties of cellulose/guar gum/biochar composite hydrogel for Cu2+, Co2+ and methylene blue, International Journal of Biological Macromolecules 242 (2023) 125021. https://doi.org/10.1016/j.ijbiomac.2023.125021.
E.S. Abdel-Halim, S.S. Al-Deyab, Hydrogel from crosslinked polyacrylamide/guar gum graft copolymer for sorption of hexavalent chromium ion, Carbohydrate Polymers 86 (2011) 1306-1312. https://doi.org/10.1016/j.carbpol.2011.06.033.
S.P. Santoso, A.E. Angkawijaya, V. Bundjaja, C.-W. Hsieh, A.W. Go, M. Yuliana, H.-Y. Hsu, P.L. Tran-Nguyen, F.E. Soetaredjo, S. Ismadji, TiO2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue, International Journal of Biological Macromolecules 193 (2021) 721-733. https://doi.org/10.1016/j.ijbiomac.2021.10.044.
C. Xu, G.P. Rangaiah, X.S. Zhao, Photocatalytic Degradation of Methylene Blue by Titanium Dioxide: Experimental and Modeling Study, Industrial & Engineering Chemistry Research 53 (2014) 14641-14649. https://doi.org/10.1021/ie502367x.
U. Mahanta, M. Khandelwal, A.S. Deshpande, TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light, Applied Surface Science 576 (2022) 151745. https://doi.org/10.1016/j.apsusc.2021.151745.
R. Sharma, S. Kalia, B.S. Kaith, M.K. Srivastava, Synthesis of guar gum-acrylic acid graft copolymers based biodegradable adsorbents for cationic dye removal, Int. J. Plast. Technol. 20 (2016) 294-314. https://doi.org/10.1007/s12588-016-9156-1.
S.P. Santoso, A. Kurniawan, F.E. Soetaredjo, K.-C. Cheng, J.N. Putro, S. Ismadji, Y.-H. Ju, Eco-friendly cellulosebentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture, Cellulose 26 (2019) 3339-3358. https://doi.org/10.1007/s10570-019-02314-2.
D.G. Njuguna, H. Schnherr, Xanthan Gum Hydrogels as High-Capacity Adsorbents for Dye Removal, ACS Appl. Polym. Mater. 3 (2021) 3142-3152. https://doi.org/10.1021/acsapm.1c00343.
J.J. Salazar-Rabago, R. Leyva-Ramos, J. Rivera-Utrilla, R. Ocampo-Perez, F.J. Cerino-Cordova, Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions, Sustain. Environ. Res. 27 (2017) 32-40. https://doi.org/10.1016/j.serj.2016.11.009.
J.N. Hiremath, B. Vishalakshi, Evaluation of a pH-responsive guar gum-based hydrogel as adsorbent for cationic dyes: kinetic and modelling study, Polym. Bull. 72 (2015) 3063-3081. https://doi.org/10.1007/s00289-015-1453-x.
Z.-H. Zhang, J.-Y. Xu, X.-L. Yang, MXene/sodium alginate gel beads for adsorption of methylene blue, Mater. Chem. Phys. 260 (2021) 124123. https://doi.org/10.1016/j.matchemphys.2020.124123.
DOI: https://doi.org/10.33508/wt.v22i2.5415
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Widya Teknik is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License