SOLID-STATE FERMENTATION DENGAN VARIASI MIKROORGANISME

Eugenia Gabriella Christo, Anita Maya Sutedja

Abstract


Fermentasi merupakan proses pertumbuhan mikroorganisme pada suatu substrat tertentu untuk meningkatkan nilai gizi suatu bahan pangan. Fermentasi padat (Solid-State Fermentation) merupakan proses fermentasi pada substrat padat yang tidak menggunakan media cair. Solid-State Fermentation sering digunakan karena menggunakan lebih sedikit air yang dapat membantu menghemat biaya. Mikroorganisme yang digunakan dalam Solid-State Fermentation mayoritas menggunakan kapang kelompok Rhizopus, Aspergillus, dan Trichoderma, untuk khamir mayoritas Saccharomyces cerevisiae, dan bakteri yaitu kelompok Bacillus dan Bakteri Asam Laktat (BAL) seperti Lactobacillus. Proses Solid-State Fermentation bergantung terhadap jenis substrat dan mikroorganisme yang digunakan. Suhu inkubasi yang digunakan dalam proses Solid-State Fermentation spesifik pada jenis mikroorganismenya. Jenis mikroorganisme yang digunakan dalam proses Solid-State Fermentation menyesuaikan dengan spesifikasi substrat. Variasi mikroorganisme yang digunakan menghasilkan berbagai enzim yang berbeda, namun kandungan protein dan lemak pada hasil fermentasi akan meningkat serta kandungan karbohidrat akan berkurang. Metabolit sekunder yang dihasilkan dari proses fermentasi dengan variasi mikroorganisme serupa yaitu kandungan fenol meningkat seiring lama waktu fermentasi hingga batas tertentu dan perlahan akan mengalami penurunan.

Save to Mendeley


Keywords


fermentasi padat; kapang; khamir; bakteri

Full Text:

PDF

References


Ahmed, T., Rana, M. R., Zzaman, W., Ara, R., & Aziz, M. G. (2021). Optimization of substrate composition for pectinase production from Satkara (Citrus macroptera) peel using Aspergillus niger-ATCC 1640 in solid-state fermentation. Heliyon, 7(10). https://doi.org/10.1016/j.heliyon.2021.e08133

Anggrayeni, Y. T., Wijanarka, & Kusdiyantini, E. (2019). Isolasi dan Identifikasi Morfologi serta Biokimia Khamir Hasil Isolasi dari Buah Tomat (Lycopersicum esculentum) yang Berpotensi Menghasilkan Bioetanol. Bioma: Berkala Ilmiah Biologi, 21(1), 16–24.

Aruna, T. E., Aworh, O. C., Raji, A. O., & Olagunju, A. I. (2017). Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Annals of Agricultural Sciences, 62(1), 33–37. https://doi.org/10.1016/j.aoas.2017.01.002

Bai, J., He, L., Zhang, J., Gu, X., Wu, B., Wang, A., Zhu, Y., Zhang, J., Zhao, Y., Yuan, J., & Xiao, X. (2024). Influences of Lactiplantibacillus plantarum and Saccharomyces cerevisiae fermentation on the nutritional components, flavor property and lipid-lowering effect of highland barley. Journal of Future Foods, 4(3), 258–266. https://doi.org/10.1016/j.jfutfo.2023.07.008

Bl, A., Borrero-l, A. M., Dom, G., Molina-guijarro, J. M., Eugenio, E., Ibarra, D., & Hern, M. (2022). Solid-State Fermentation with Streptomyces as an Ecofriendly Route to Tune Lignin Properties and Its Use as a Binder in Adhesive Formulation. ACS Sustainable Chemistry & Engineering, 10, 10403–10416. https://doi.org/10.1021/acssuschemeng.2c03523

Bohacz, J., & Korniłłowicz-Kowalska, T. (2020). Modification of post-industrial lignin by fungal strains of the genus Trichoderma isolated from different composting stages. Journal of Environmental Management, 266(November 2019). https://doi.org/10.1016/j.jenvman.2020.110573

Călinoiu, L. F., Cătoi, A. F., & Vodnar, D. C. (2019). Solid-state yeast fermented wheat and oat bran as a route for delivery of antioxidants. Antioxidants, 8(9). https://doi.org/10.3390/antiox8090372

Carlos, D. L. M. J., Leonardo, S., Jesús, M. C., Paola, M. R., Alejandro, Z. C., Juan, A. V., & Noé, A. C. (2020). Solid-state fermentation with Aspergillus niger gh1 to enhance polyphenolic content and antioxidative activity of castilla rose (Purshia plicata). Plants, 9(11), 1–15. https://doi.org/10.3390/plants9111518

Chen, J., Chen, Y., Hu, J., He, C., Peng, X., Li, Z., Wang, Y., Zhu, M., & Xiao, Y. (2023). Solid-state fermentation with Rhizopus oryzae HC-1 improves the metabolites profiling, antioxidant activity and gut microbiota modulation effect of soybeans. Lwt, 187(115253), 1–14. https://doi.org/10.1016/j.lwt.2023.115253

Dominguez, G., Fajardo, C., Rodriguez, J., Eugenio, M. E., & Hernandez, M. (2021). Optimization of Enzyme Production from Streptomyces by Solid-state Fermentation of Agricultural Wastes using the Orthogonal Projections to Latent Structures-Discriminant Analysis ( OPLS-DA ) Method. 1–22. https://doi.org/https://doi.org/10.21203/rs.3.rs-459467/v1

Hawashi, M., Altway, A., Widjaja, T., & Gunawan, S. (2019). Optimization of process conditions for tannin content reduction in cassava leaves during solid state fermentation using Saccharomyces cerevisiae. Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02298

Hur, J., Thanh, T., Nguyen, H., Park, N., Kim, J., & Kim, D. (2018). Characterization of quinoa ( Chenopodium quinoa ) fermented by Rhizopus oligosporus and its bioactive properties. AMB Express, 8(143), 1–8. https://doi.org/https://doi.org/10.1186/s13568-018-0675-3

Ibarruri, J., Goiri, I., Cebrián, M., & García-Rodríguez, A. (2021). Solid state fermentation as a tool to stabilize and improve nutritive value of fruit and vegetable discards: Effect on nutritional composition, in vitro ruminal fermentation and organic matter digestibility. Animals, 11(6), 1–11. https://doi.org/10.3390/ani11061653

Khootama, A., Putri, D. N., & Hermansyah, H. (2018). Techno-economic analysis of lipase enzyme production from Aspergillus niger using agro-industrial waste by solid state fermentation. Energy Procedia, 153, 143–148. https://doi.org/10.1016/j.egypro.2018.10.054

Koni, T. N. I., Rusman, Hanim, C., & Zuprizal. (2017). Effect of pH and temperature on Bacillus subtilis FNCC 0059 oxalate decarboxylase activity. Pakistan Journal of Biological Sciences, 20(9), 436–441. https://doi.org/10.3923/pjbs.2017.436.441

Konkol, D., Jonuzi, E., Popiela, E., Sierzant, K., Korzeniowska, M., Leicht, K., Gumowski, M., Krasowska, A., Lukaszewicz, M., & Korczynski, M. (2023). Influence of solid state fermentation with Bacillus subtilis 67 strain on the nutritional value of rapeseed meal and its effects on performance and meat quality of broiler chickens. Poultry Science, 102(102742), 1–11. https://doi.org/10.1016/j.psj.2023.102742

Kritsadaruangchai, U., Chaiwut, P., Chomnunti, P., Thaochan, N., Saikeur, A., & Pintathong, P. (2019). Effect of solid state fermentation with Trichoderma spp. on phenolic content and antioxidant capacities of mature Assam tea leaves. Journal of Food Science and Agricultural Technology, 5, 106–113.

Lee, G., Thanh Hanh Nguyen, T., Lim, T. Y., Lim, J., Park, B., Lee, S., Mok, I.-K., Pal, K., Lim, S., & Kim, D. (2020). Fermented Wild Ginseng by Rhizopus oligosporus Improved L -Carnitine and Ginsenoside Contents. Molecules, 25(2111), 1–15.

Li, J., Tang, X., Qian, H., Yang, Y., Zhu, X., Wu, Q., Mu, Y., & Huang, Z. (2021). Analysis of Saccharification Products of High-Concentration Glutinous Rice Fermentation by Rhizopus nigricans Q3 and Alcoholic Fermentation of Saccharomyces cerevisiae GY-1. ACS Omega, 6(12), 8038–8044. https://doi.org/10.1021/acsomega.0c05452

Li, X., He, Y., Xie, Y., Zhang, L., Li, J., & Liu, H. (2023). Effects of fermentation with Kefir grains on nutrient composition, flavor volatiles, and product physical stability of a hemp seed (Cannabis sativa L.) beverage. Lwt - Food Science and Technology, 183(114934), 1–7. https://doi.org/10.1016/j.lwt.2023.114934

Lim, J., Kim, H., Park, S. B., Pal, K., Kim, S. W., & Kim, D. (2023). Effects of solid-state fermentation using R. oligosporus on the phytochemical composition of wild-simulated ginseng leaf and its biological properties. Food Bioscience, 52. https://doi.org/10.1016/j.fbio.2023.102412

Lim, J., Nguyen, T. T. H., Pal, K., Gil Kang, C., Park, C., Kim, S. W., & Kim, D. (2022). Phytochemical properties and functional characteristics of wild turmeric (Curcuma aromatica) fermented with Rhizopus oligosporus. Food Chemistry: X, 13(December 2021). https://doi.org/10.1016/j.fochx.2021.100198

Lip, K. Y. F., García-Ríos, E., Costa, C. E., Guillamón, J. M., Domingues, L., Teixeira, J., & van Gulik, W. M. (2020). Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub- and- supra optimal temperatures. Biotechnology Reports, 26, 1–11. https://doi.org/10.1016/j.btre.2020.e00462

Marlinda, Ramli, & Nadir, M. (2017). Pengaruh Penambahan Starter Aspergillus niger Terhadap Konsentrasi Asam Itakonat Dengan Substrat Gliserol Dan Molase. Tk-004, 1–10. jurnal.umj.ac.id/index.php/semnastek p-

Maryati, Y., Susilowati, A., Melanie, H., & Lotulung, P. D. (2019). Fermentation of soybean (Glycine max (l.) merr) using mix inocula of Rhizopus sp. and Sacharomyces cereviceae for alternative source of folic acid. IOP Conference Series: Materials Science and Engineering, 536(1). https://doi.org/10.1088/1757-899X/536/1/012124

Meng, J., Wang, J. L., Hao, Y. P., Zhu, M. X., & Wang, J. (2023). Effects of Lactobacillus fermentum GD01 fermentation on the nutritional components and flavor substances of three kinds of bean milk. Lwt - Food Science and Technology, 184(115006), 1–9. https://doi.org/10.1016/j.lwt.2023.115006

Moharam, M. E., El-bendary, M. A., Abo, M. M., Beih, F. E.-, Hassnin, S. M., Salama, A., Omara, E. A., & Elgamal, N. N. (2023). Modeling and in - vivo evaluation of fibrinolytic enzyme produced by Bacillus subtilis Egy under solid state fermentation. Heliyon, 9. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e16254

Montesqrit, -, Mirzah, -, & Pratiwi, S. (2022). Pengaruh Lama Fermentasi dan Dosis Inokulum Bacillus amyloliquefaciens Terhadap Kandungan Nutrisi Daun Paitan (Tithonia diversifolia). Pastura, 11(2), 91–95. https://doi.org/10.24843/pastura.2022.v11.i02.p04

Nofiani, R., Ardiningsih, P., Adhitiyawarman, & Sarwiyati. (2022). Characteristics of Lactic Acid Bacteria isolated from traditional fermented fish. Biodiversitas, 23(11), 5662–5669. https://doi.org/10.13057/biodiv/d231116

Prabaningtyas, R. K., Putri, D. N., Utami, T. S., & Hermansyah, H. (2018). Production of immobilized extracellular lipase from Aspergillus niger by solid state fermentation method using palm kernel cake, soybean meal, and coir pith as the substrate. Energy Procedia, 153, 242–247. https://doi.org/10.1016/j.egypro.2018.10.010

Prasetio, P. O., Puspita, I. D., & Fatmawati, I. (2021). Tepung Kacang Bambara (Dietary Fiber and Organoleptic of Corn Bran Crackers with Addition of Bambara Groundnut Flour). Jurnal Teknologi Pangan Dan Gizi, 20(2), 130–138. http://jurnal.wima.ac.id/index.php/JTPG/article/view/3191

Said, S. D., Pontas, K., Thaib, A., Maimun, T., & Silvianti, C. (2022). Increasing Crude Protein Content of Sago Dregs Through Solid State Fermentation Process. Journal of Applied Technology, 9(1), 1–6.

Šalić, A., & Šamec, D. (2022). Changes in the content of glucosinolates, polyphenols and carotenoids during lactic-acid fermentation of cruciferous vegetables: A mini review. Food Chemistry: X, 16(100457), 1–6. https://doi.org/10.1016/j.fochx.2022.100457

Šelo, G., Planinić, M., Tišma, M., Martinović, J., Perković, G., & Bucić-Kojić, A. (2023). Bioconversion of Grape Pomace with Rhizopus oryzae under Solid-State Conditions: Changes in the Chemical Composition and Profile of Phenolic Compounds. Microorganisms, 11(956), 1–22. https://doi.org/10.3390/microorganisms11040956

Sine, Y., & Soetarto, E. S. (2018). Isolasi dan identifikasi kapang Rhizopus pada tempe gude (Cajanus cajan L.). Savana Cendana, 3(04), 67–68. https://doi.org/10.32938/sc.v3i04.487

Slizewska, K., & Chlebicz-Wójcik, A. (2020). Growth Kinetics of Probiotic Lactobacillus Strains in the Alternative, Cost-Efficient Semi-Solid State Fermentation. Biology, 9(423), 1–13.

Starzyńska-Janiszewska, A., Stodolak, B., Mickowska, B., & Socha, R. (2021). Fermentation with edible Rhizopus strains as a beneficial alternative method in wheat germ cake processing. Journal of Cereal Science, 102(103309). https://doi.org/10.1016/j.jcs.2021.103309

Suzuki, S., Ohmori, H., Hayashida, S., Nomura, M., Kobayashi, M., Hagi, T., Narita, T., Tomita, S., Yamashita, H., Arakawa, Y., Miura, T., Sato, K., & Kusumoto, K. I. (2021). Lipase and protease activities in Koji cheeses surface-ripened with Aspergillus strains. Food Science and Technology Research, 27(3), 543–549. https://doi.org/10.3136/fstr.27.543

Triasih, U., Wuryantini, S., & Agustina, D. (2022). Karakterisasi Cendawan Rizosfer Kebun Jeruk Organik dan Potensinya dalam Menghambat Pertumbuhan Botryodiplodia theobromae dan Colletotrichum gloeosporioides Characterization of Soil Rhizospheric Fungi on Citrus Plantation and Their Potential to Inhibiting. Jurnal Fitopatologi Indonesia, 18(5), 205–212. https://doi.org/10.14692/jfi.18.5.

Xiao, L., Yang, C., Zhang, X., Wang, Y., Li, Z., Chen, Y., Liu, Z., Zhu, M., & Xiao, Y. (2023). Effects of solid-state fermentation with Bacillus subtilis LK-1 on the volatile profile, catechins composition and antioxidant activity of dark teas. Food Chemistry: X, 19. https://doi.org/10.1016/j.fochx.2023.100811

Xu, R., Tian, T., Hu, B., Zhang, Z., Liu, J., Yu, D., & Xu, H. (2023). Effect of solid-state fermentation with Bacillus pumilus on the nutritional value, anti-nutritional factors and antioxidant activity of faba bean (Vicia faba L.) meal. Lwt - Food Science and Technology, 185(115117), 1–8. https://doi.org/10.1016/j.lwt.2023.115117

Xue, P., Liao, W., Chen, Y., Xie, J., Chang, X., Peng, G., Huang, Q., Wang, Y., Sun, N., & Yu, Q. (2022). Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger. Lwt, 161(113387), 1–10. https://doi.org/10.1016/j.lwt.2022.113387


Refbacks

  • There are currently no refbacks.