SOLID-STATE FERMENTATION DENGAN VARIASI MIKROORGANISME
Abstract
Keywords
Full Text:
PDFReferences
Ahmed, T., Rana, M. R., Zzaman, W., Ara, R., & Aziz, M. G. (2021). Optimization of substrate composition for pectinase production from Satkara (Citrus macroptera) peel using Aspergillus niger-ATCC 1640 in solid-state fermentation. Heliyon, 7(10). https://doi.org/10.1016/j.heliyon.2021.e08133
Anggrayeni, Y. T., Wijanarka, & Kusdiyantini, E. (2019). Isolasi dan Identifikasi Morfologi serta Biokimia Khamir Hasil Isolasi dari Buah Tomat (Lycopersicum esculentum) yang Berpotensi Menghasilkan Bioetanol. Bioma: Berkala Ilmiah Biologi, 21(1), 1624.
Aruna, T. E., Aworh, O. C., Raji, A. O., & Olagunju, A. I. (2017). Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Annals of Agricultural Sciences, 62(1), 3337. https://doi.org/10.1016/j.aoas.2017.01.002
Bai, J., He, L., Zhang, J., Gu, X., Wu, B., Wang, A., Zhu, Y., Zhang, J., Zhao, Y., Yuan, J., & Xiao, X. (2024). Influences of Lactiplantibacillus plantarum and Saccharomyces cerevisiae fermentation on the nutritional components, flavor property and lipid-lowering effect of highland barley. Journal of Future Foods, 4(3), 258266. https://doi.org/10.1016/j.jfutfo.2023.07.008
Bl, A., Borrero-l, A. M., Dom, G., Molina-guijarro, J. M., Eugenio, E., Ibarra, D., & Hern, M. (2022). Solid-State Fermentation with Streptomyces as an Ecofriendly Route to Tune Lignin Properties and Its Use as a Binder in Adhesive Formulation. ACS Sustainable Chemistry & Engineering, 10, 1040310416. https://doi.org/10.1021/acssuschemeng.2c03523
Bohacz, J., & Korni??owicz-Kowalska, T. (2020). Modification of post-industrial lignin by fungal strains of the genus Trichoderma isolated from different composting stages. Journal of Environmental Management, 266(November 2019). https://doi.org/10.1016/j.jenvman.2020.110573
C?linoiu, L. F., C?toi, A. F., & Vodnar, D. C. (2019). Solid-state yeast fermented wheat and oat bran as a route for delivery of antioxidants. Antioxidants, 8(9). https://doi.org/10.3390/antiox8090372
Carlos, D. L. M. J., Leonardo, S., Jess, M. C., Paola, M. R., Alejandro, Z. C., Juan, A. V., & No, A. C. (2020). Solid-state fermentation with Aspergillus niger gh1 to enhance polyphenolic content and antioxidative activity of castilla rose (Purshia plicata). Plants, 9(11), 115. https://doi.org/10.3390/plants9111518
Chen, J., Chen, Y., Hu, J., He, C., Peng, X., Li, Z., Wang, Y., Zhu, M., & Xiao, Y. (2023). Solid-state fermentation with Rhizopus oryzae HC-1 improves the metabolites profiling, antioxidant activity and gut microbiota modulation effect of soybeans. Lwt, 187(115253), 114. https://doi.org/10.1016/j.lwt.2023.115253
Dominguez, G., Fajardo, C., Rodriguez, J., Eugenio, M. E., & Hernandez, M. (2021). Optimization of Enzyme Production from Streptomyces by Solid-state Fermentation of Agricultural Wastes using the Orthogonal Projections to Latent Structures-Discriminant Analysis ( OPLS-DA ) Method. 122. https://doi.org/https://doi.org/10.21203/rs.3.rs-459467/v1
Hawashi, M., Altway, A., Widjaja, T., & Gunawan, S. (2019). Optimization of process conditions for tannin content reduction in cassava leaves during solid state fermentation using Saccharomyces cerevisiae. Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02298
Hur, J., Thanh, T., Nguyen, H., Park, N., Kim, J., & Kim, D. (2018). Characterization of quinoa ( Chenopodium quinoa ) fermented by Rhizopus oligosporus and its bioactive properties. AMB Express, 8(143), 18. https://doi.org/https://doi.org/10.1186/s13568-018-0675-3
Ibarruri, J., Goiri, I., Cebrin, M., & Garca-Rodrguez, A. (2021). Solid state fermentation as a tool to stabilize and improve nutritive value of fruit and vegetable discards: Effect on nutritional composition, in vitro ruminal fermentation and organic matter digestibility. Animals, 11(6), 111. https://doi.org/10.3390/ani11061653
Khootama, A., Putri, D. N., & Hermansyah, H. (2018). Techno-economic analysis of lipase enzyme production from Aspergillus niger using agro-industrial waste by solid state fermentation. Energy Procedia, 153, 143148. https://doi.org/10.1016/j.egypro.2018.10.054
Koni, T. N. I., Rusman, Hanim, C., & Zuprizal. (2017). Effect of pH and temperature on Bacillus subtilis FNCC 0059 oxalate decarboxylase activity. Pakistan Journal of Biological Sciences, 20(9), 436441. https://doi.org/10.3923/pjbs.2017.436.441
Konkol, D., Jonuzi, E., Popiela, E., Sierzant, K., Korzeniowska, M., Leicht, K., Gumowski, M., Krasowska, A., Lukaszewicz, M., & Korczynski, M. (2023). Influence of solid state fermentation with Bacillus subtilis 67 strain on the nutritional value of rapeseed meal and its effects on performance and meat quality of broiler chickens. Poultry Science, 102(102742), 111. https://doi.org/10.1016/j.psj.2023.102742
Kritsadaruangchai, U., Chaiwut, P., Chomnunti, P., Thaochan, N., Saikeur, A., & Pintathong, P. (2019). Effect of solid state fermentation with Trichoderma spp. on phenolic content and antioxidant capacities of mature Assam tea leaves. Journal of Food Science and Agricultural Technology, 5, 106113.
Lee, G., Thanh Hanh Nguyen, T., Lim, T. Y., Lim, J., Park, B., Lee, S., Mok, I.-K., Pal, K., Lim, S., & Kim, D. (2020). Fermented Wild Ginseng by Rhizopus oligosporus Improved L -Carnitine and Ginsenoside Contents. Molecules, 25(2111), 115.
Li, J., Tang, X., Qian, H., Yang, Y., Zhu, X., Wu, Q., Mu, Y., & Huang, Z. (2021). Analysis of Saccharification Products of High-Concentration Glutinous Rice Fermentation by Rhizopus nigricans Q3 and Alcoholic Fermentation of Saccharomyces cerevisiae GY-1. ACS Omega, 6(12), 80388044. https://doi.org/10.1021/acsomega.0c05452
Li, X., He, Y., Xie, Y., Zhang, L., Li, J., & Liu, H. (2023). Effects of fermentation with Kefir grains on nutrient composition, flavor volatiles, and product physical stability of a hemp seed (Cannabis sativa L.) beverage. Lwt - Food Science and Technology, 183(114934), 17. https://doi.org/10.1016/j.lwt.2023.114934
Lim, J., Kim, H., Park, S. B., Pal, K., Kim, S. W., & Kim, D. (2023). Effects of solid-state fermentation using R. oligosporus on the phytochemical composition of wild-simulated ginseng leaf and its biological properties. Food Bioscience, 52. https://doi.org/10.1016/j.fbio.2023.102412
Lim, J., Nguyen, T. T. H., Pal, K., Gil Kang, C., Park, C., Kim, S. W., & Kim, D. (2022). Phytochemical properties and functional characteristics of wild turmeric (Curcuma aromatica) fermented with Rhizopus oligosporus. Food Chemistry: X, 13(December 2021). https://doi.org/10.1016/j.fochx.2021.100198
Lip, K. Y. F., Garca-Ros, E., Costa, C. E., Guillamn, J. M., Domingues, L., Teixeira, J., & van Gulik, W. M. (2020). Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub- and- supra optimal temperatures. Biotechnology Reports, 26, 111. https://doi.org/10.1016/j.btre.2020.e00462
Marlinda, Ramli, & Nadir, M. (2017). Pengaruh Penambahan Starter Aspergillus niger Terhadap Konsentrasi Asam Itakonat Dengan Substrat Gliserol Dan Molase. Tk-004, 110. jurnal.umj.ac.id/index.php/semnastek p-
Maryati, Y., Susilowati, A., Melanie, H., & Lotulung, P. D. (2019). Fermentation of soybean (Glycine max (l.) merr) using mix inocula of Rhizopus sp. and Sacharomyces cereviceae for alternative source of folic acid. IOP Conference Series: Materials Science and Engineering, 536(1). https://doi.org/10.1088/1757-899X/536/1/012124
Meng, J., Wang, J. L., Hao, Y. P., Zhu, M. X., & Wang, J. (2023). Effects of Lactobacillus fermentum GD01 fermentation on the nutritional components and flavor substances of three kinds of bean milk. Lwt - Food Science and Technology, 184(115006), 19. https://doi.org/10.1016/j.lwt.2023.115006
Moharam, M. E., El-bendary, M. A., Abo, M. M., Beih, F. E.-, Hassnin, S. M., Salama, A., Omara, E. A., & Elgamal, N. N. (2023). Modeling and in - vivo evaluation of fibrinolytic enzyme produced by Bacillus subtilis Egy under solid state fermentation. Heliyon, 9. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e16254
Montesqrit, -, Mirzah, -, & Pratiwi, S. (2022). Pengaruh Lama Fermentasi dan Dosis Inokulum Bacillus amyloliquefaciens Terhadap Kandungan Nutrisi Daun Paitan (Tithonia diversifolia). Pastura, 11(2), 9195. https://doi.org/10.24843/pastura.2022.v11.i02.p04
Nofiani, R., Ardiningsih, P., Adhitiyawarman, & Sarwiyati. (2022). Characteristics of Lactic Acid Bacteria isolated from traditional fermented fish. Biodiversitas, 23(11), 56625669. https://doi.org/10.13057/biodiv/d231116
Prabaningtyas, R. K., Putri, D. N., Utami, T. S., & Hermansyah, H. (2018). Production of immobilized extracellular lipase from Aspergillus niger by solid state fermentation method using palm kernel cake, soybean meal, and coir pith as the substrate. Energy Procedia, 153, 242247. https://doi.org/10.1016/j.egypro.2018.10.010
Prasetio, P. O., Puspita, I. D., & Fatmawati, I. (2021). Tepung Kacang Bambara (Dietary Fiber and Organoleptic of Corn Bran Crackers with Addition of Bambara Groundnut Flour). Jurnal Teknologi Pangan Dan Gizi, 20(2), 130138. http://jurnal.wima.ac.id/index.php/JTPG/article/view/3191
Said, S. D., Pontas, K., Thaib, A., Maimun, T., & Silvianti, C. (2022). Increasing Crude Protein Content of Sago Dregs Through Solid State Fermentation Process. Journal of Applied Technology, 9(1), 16.
ali?, A., & amec, D. (2022). Changes in the content of glucosinolates, polyphenols and carotenoids during lactic-acid fermentation of cruciferous vegetables: A mini review. Food Chemistry: X, 16(100457), 16. https://doi.org/10.1016/j.fochx.2022.100457
elo, G., Planini?, M., Tima, M., Martinovi?, J., Perkovi?, G., & Buci?-Koji?, A. (2023). Bioconversion of Grape Pomace with Rhizopus oryzae under Solid-State Conditions: Changes in the Chemical Composition and Profile of Phenolic Compounds. Microorganisms, 11(956), 122. https://doi.org/10.3390/microorganisms11040956
Sine, Y., & Soetarto, E. S. (2018). Isolasi dan identifikasi kapang Rhizopus pada tempe gude (Cajanus cajan L.). Savana Cendana, 3(04), 6768. https://doi.org/10.32938/sc.v3i04.487
Slizewska, K., & Chlebicz-Wjcik, A. (2020). Growth Kinetics of Probiotic Lactobacillus Strains in the Alternative, Cost-Efficient Semi-Solid State Fermentation. Biology, 9(423), 113.
Starzy?ska-Janiszewska, A., Stodolak, B., Mickowska, B., & Socha, R. (2021). Fermentation with edible Rhizopus strains as a beneficial alternative method in wheat germ cake processing. Journal of Cereal Science, 102(103309). https://doi.org/10.1016/j.jcs.2021.103309
Suzuki, S., Ohmori, H., Hayashida, S., Nomura, M., Kobayashi, M., Hagi, T., Narita, T., Tomita, S., Yamashita, H., Arakawa, Y., Miura, T., Sato, K., & Kusumoto, K. I. (2021). Lipase and protease activities in Koji cheeses surface-ripened with Aspergillus strains. Food Science and Technology Research, 27(3), 543549. https://doi.org/10.3136/fstr.27.543
Triasih, U., Wuryantini, S., & Agustina, D. (2022). Karakterisasi Cendawan Rizosfer Kebun Jeruk Organik dan Potensinya dalam Menghambat Pertumbuhan Botryodiplodia theobromae dan Colletotrichum gloeosporioides Characterization of Soil Rhizospheric Fungi on Citrus Plantation and Their Potential to Inhibiting. Jurnal Fitopatologi Indonesia, 18(5), 205212. https://doi.org/10.14692/jfi.18.5.
Xiao, L., Yang, C., Zhang, X., Wang, Y., Li, Z., Chen, Y., Liu, Z., Zhu, M., & Xiao, Y. (2023). Effects of solid-state fermentation with Bacillus subtilis LK-1 on the volatile profile, catechins composition and antioxidant activity of dark teas. Food Chemistry: X, 19. https://doi.org/10.1016/j.fochx.2023.100811
Xu, R., Tian, T., Hu, B., Zhang, Z., Liu, J., Yu, D., & Xu, H. (2023). Effect of solid-state fermentation with Bacillus pumilus on the nutritional value, anti-nutritional factors and antioxidant activity of faba bean (Vicia faba L.) meal. Lwt - Food Science and Technology, 185(115117), 18. https://doi.org/10.1016/j.lwt.2023.115117
Xue, P., Liao, W., Chen, Y., Xie, J., Chang, X., Peng, G., Huang, Q., Wang, Y., Sun, N., & Yu, Q. (2022). Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger. Lwt, 161(113387), 110. https://doi.org/10.1016/j.lwt.2022.113387
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.