PERAN PENSTABIL PADA PLANT-BASED YOGHURT

Zefanya Soewangsa, Laurensia Maria Yulian Dwiputranti Darmoatmodjo

Abstract


Perubahan preferensi konsumen terhadap produk pangan menyebabkan perkembangan produk olahan nabati meningkat pesat selama beberapa tahun terakhir. Produk plant-based yoghurt merupakan salah satu produk fermentasi yang terbuat dari sari tumbuhan, penstabil, dan dapat ditambahkan perisa. Penstabil untuk plant-based yoghurt yang sering digunakan meliputi kelompok protein, hidrokoloid, dan karbohidrat. Pembentukan tekstur kokoh dan
meminimalisasi terjadinya sineresis telah menjadi tantangan terbesar dalam pembuatan plant-based yoghurt. Pemerangkapan air yang rendah terutama disebabkan oleh struktur jaringan gel tiga dimensi yang tidak stabil dari plant-based yoghurt. Terjadinya destabilisasi struktur protein nabati pada plant-based yoghurt yang disebabkan oleh fermentasi dapat menyebabkan melemahnya struktur gel produk dan pemisahan fase air selama penyimpanan berlangsung. Sineresis pada plant-based yoghurt dapat terjadi karena formulasi bahan yang tidak tepat, perlakuan panas dan homogenisasi yang tidak memadai, pemilihan kultur bakteri yang tidak tepat, kesalahan dalam kombinasi waktu atau temperatur inkubasi, pendinginan yang cepat, pengasaman, pengocokan, dan perubahan struktur gel selama pengangkutan maupun pemasaran. Tekstur yang terbentuk pada plant-based yoghurt untuk setiap kelompok penstabil memiliki persamaan dan perbedaan dikarenakan adanya komponen maupun karakteristik fisikokimia yang
berbeda dari segi kandungan gizi, komposisi, ukuran, perbedaan metode pembuatan, dan luas permukaan. Penulisan review ini untuk mengetahui peran penstabil dalam membentuk dan mempertahankan tekstur kokoh pada plant-based yoghurt selama penyimpanan.

 

Save to Mendeley


Keywords


penstabil, plant-based yoghurt, sineresis, tekstur

Full Text:

PDF

References


Akhi, A., Ahmed, T., Ara, R., & Rana, M. R. (2024). Response surface optimization of thermo-sonication conditions and taro mucilage concentrations for the preparation of soy yogurt. Journal of Agriculture and Food Research, 15, 100918.

https://doi.org/10.1016/j.jafr.2023.100 91

Bernat, N., Cháfer, M., Chiralt, A., & González-Martínez, C. (2014). Vegetable milks and their fermented derivative products. International Journal of Food Studies, 3(1), 93–124. https://doi.org/10.7455/ijfs/3.1.2014.a9

Clegg, M. E., Tarrado Ribes, A., Reynolds, R., Kliem, K., & Stergiadis, S. (2021). A comparative assessment of the nutritional composition of dairy and plant-based dairy alternatives available for sale in the UK and the implications for consumers’ dietary intakes. Food Research International, 148. https://doi.org/10.1016/j.foodres.2021. 110586

Demı̇ r, H., Simsek, M., & Yildirim, G. (2021). Effect of oat milk pasteurization type on the characteristics of yogurt. LWT, 135. https://doi.org/10.1016/j.lwt.2020.1102 71

Devnani, B., Ong, L., Kentish, S. E., Scales,

P. J., & Gras, S. L. (2022). Physicochemical and rheological properties of commercial almond-based yoghurt alternatives to dairy and soy yoghurts. Future Foods, 6. https://doi.org/10.1016/j.fufo.2022.100 185

Dhakal, D., Younas, T., Bhusal, R. P., Devkota, L., Henry, C. J., & Dhital, S. (2023). Design rules of plant-based yoghurt-mimic: Formulation, functionality, sensory profile and nutritional value. Food Hydrocolloids, 142. https://doi.org/10.1016/j.foodhyd.2023. 108786

Feng, L., Jia, X., Yan, J., Yan, W., & Yin, L. (2021). Mechanical, thermal stability and microstructural properties of emulsion filled gels: Effect of sugar beet pectin/soy protein isolate ratio. LWT, 141.

https://doi.org/10.1016/j.lwt.2021.1109 17

Gilbert, A., Rioux, L. E., St-Gelais, D., & Turgeon, S. L. (2020). Characterization of syneresis phenomena in stirred acid milk gel using low frequency nuclear magnetic resonance on hydrogen and image analyses. Food Hydrocolloids, 106. https://doi.org/10.1016/j.foodhyd.2020. 105907

Gilbert, A., Rioux, L. E., St-Gelais, D., & Turgeon, S. L. (2021). Smoothing temperature and ratio of casein to whey protein: Two tools to improve nonfat stirred yogurt properties. Journal of Dairy Science, 104(10), 10485–10499. https://doi.org/10.3168/jds.2020-20040

Grasso, N., Alonso-Miravalles, L., & O’Mahony, J. A. (2020). Composition, physicochemical and sensorial properties of commercial plant-based yogurts. Foods, 9(3).

https://doi.org/10.3390/foods9030252 Gupta, M. K., Torrico, D. D., Ong, L., Gras, S. L., Dunshea, F. R., & Cottrell, J. J. (2022). Plant and Dairy-Based Yogurts: A Comparison of Consumer Sensory Acceptability Linked to Textural Analysis. Foods, 11(3). https://doi.org/10.3390/foods11030463

Haji Ghafarloo, M., Jouki, M., & Tabari, M. (2020). Production and characterization of synbiotic Doogh, a yogurt-based Iranian drink by gum arabic, ginger extract and B. bifidum. Journal of Food Science and Technology, 57(3), 1158–1166. https://doi.org/10.1007/s13197-019-04 151-4

Haug, I. J., & Draget, K. I. (2011). Gelatin. Handbook of Food Proteins, 92–115. https://doi.org/10.1533/9780857093639.92

Huang, K., Liu, Y., Zhang, Y., Cao, H., Luo, D. ke, Yi, C., & Guan, X. (2022). Formulation of plant-based yoghurt from soybean and quinoa and evaluation of physicochemical, rheological, sensory and functional properties. Food Bioscience, 49. https://doi.org/10.1016/j.fbio.2022.101 831

Hussain, M. I., Farooq, M., Syed, Q. A.,

Ishaq, A., Al-Ghamdi, A. A., & Hatamleh, A. A. (2021). Botany, nutritional value, phytochemical composition and biological activities of quinoa. Plants, 10(11). https://doi.org/10.3390/plants10112258

Jiang, S., Altaf hussain, M., Cheng, J., Jiang, Z., Geng, H., Sun, Y., Sun, C., & Hou, J. (2018). Effect of heat treatment on physicochemical and emulsifying properties of polymerized whey protein concentrate and polymerized whey protein isolate. LWT, 98, 134–140.

https://doi.org/10.1016/j.lwt.2018.08.0 28

Kong, X., Xiao, Z., Du, M., Wang, K., Yu, W., Chen, Y., Liu, Z., Cheng, Y., & Gan, J. (2022). Physicochemical, Textural, and Sensorial Properties of Soy Yogurt as Affected by Addition of Low Acyl Gellan Gum. Gels, 8(7). https://doi.org/10.3390/gels8070453

Li, K., Duan, Z., Zhang, J., & Cui, H. (2023).

Growth kinetics, metabolomics changes, and antioxidant activity of probiotics in fermented highland barley-based yogurt. LWT, 173. https://doi.org/10.1016/j.lwt.2022.1142 39

Li, N., Yang, M., Guo, Y., Tong, L. T., Wang, Y., Zhang, S., Wang, L., Fan, B.,

Wang, F., & Liu, L. (2022). Physicochemical properties of different pea proteins in relation to their gelation ability to form lactic acid bacteria induced yogurt gel. LWT, 161. https://doi.org/10.1016/j.lwt.2022.1133 81

Liu, Y., Huang, K., Zhang, Y., Cao, H., Luo, D. ke, Yi, C., & Guan, X. (2023). Manufacture and characterization of a novel dairy-free quinoa yogurt fermented by modified commercial starter with Weissella confusa. Food Chemistry: X, 19. https://doi.org/10.1016/j.fochx.2023.10 0823

Ma, W., Zhang, C., Kong, X., Li, X., Chen, Y., & Hua, Y. (2021). Effect of pea milk preparation on the quality of non-dairy yoghurts. Food Bioscience, 44. https://doi.org/10.1016/j.fbio.2021.101 416

Macit, E., Karaoglu, M. M., & Bakirci, I. (2019). Effects of Some Stabilizers on the Textural Properties of Yogurt. Alınteri Zirai Bilimler Dergisi, 34(1), 15–20. https://doi.org/10.28955/alinterizbd.44 1313

Mäkinen, O. E., Wanhalinna, V., Zannini, E., & Arendt, E. K. (2016). Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Critical Reviews in Food Science and Nutrition, 56(3), 339–349. https://doi.org/10.1080/10408398.2012

.761950

Malik, M. A., & Saini, C. S. (2017). Polyphenol removal from sunflower seed and kernel: Effect on functional and rheological properties of protein isolates. Food Hydrocolloids, 63, 705–715.

https://doi.org/10.1016/j.foodhyd.2016. 10.026

Mohd Fazla, S. N., Marzlan, A. A., Meor Hussin, A. S., Abd Rahim, M. H., Madzuki, I. N., & Mohsin, A. Z. (2023). Physicochemical, microbiological, and sensorial properties of chickpea yogurt analogue produced with different types of stabilizers. Discover Food, 3(1). https://doi.org/10.1007/s44187-023-00 059-3

Nadiya Jan, K., Panesar, P. S., & Singh, S. (2019). Effect of moisture content on the physical and mechanical properties of quinoa seeds. International Agrophysics, 33(1), 41–48. https://doi.org/10.31545/intagr/104374

Naibaho, J., Butula, N., Jonuzi, E., Korzeniowska, M., Chodaczek, G., & Yang, B. (2022). The roles of brewers’ spent grain derivatives in coconut-based yogurt-alternatives: Microstructural characteristic and the evaluation of physico-chemical properties during the storage. Current Research in Food Science, 5, 1195–1204. https://doi.org/10.1016/j.crfs.2022.07.0 11

Olabiran, T. E., Awolu, O. O., & Ayo-Omogie, H. N. (2023). Quality chracterization of functional soy-based yoghurt incorporated with scent leaf (Ocimum gratissimum) essential oil microcapsules. Food Chemistry Advances, 3.

https://doi.org/10.1016/j.focha.2023.10 0336

Pachekrepapol, U., Kokhuenkhan, Y., & Ongsawat, J. (2021). Formulation of yogurt-like product from coconut milk and evaluation of physicochemical, rheological, and sensory properties. International Journal of Gastronomy and Food Science, 25.

https://doi.org/10.1016/j.ijgfs.2021.100 393

Part, N., Kazantseva, J., Rosenvald, S., Kallastu, A., Vaikma, H., Kriščiunaite, T., Pismennõi, D., & Viiard, E. (2023). Microbiological, chemical, and sensorial characterisation of commercially available plant-based yoghurt alternatives. Future Foods, 7. https://doi.org/10.1016/j.fufo.2022.100 212

Patil, U., & Benjakul, S. (2018). Coconut Milk and Coconut Oil: Their Manufacture Associated with Protein Functionality. Journal of Food Science, 83(8), 2019–2027. https://doi.org/10.1111/1750-3841.142 23

Paul, A. A., Kumar, S., Kumar, V., & Sharma, R. (2020). Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. In Critical Reviews in Food Science and Nutrition 60(18), 3005–3023.

https://doi.org/10.1080/10408398.2019

.1674243

Rafiq, L., Zahoor, T., Sagheer, A., Khalid, N., Ur Rahman, U., & Liaqat, A. (2020). Augmenting yogurt quality attributes through hydrocolloidal gums. Asian-Australasian Journal of Animal Sciences, 33(2), 323–331. https://doi.org/10.5713/ajas.18.0218

Saleh, A., Mohamed, A. A., Alamri, M. S., Hussain, S., Qasem, A. A., & Ibraheem, M. A. (2020). Effect of different starches on the rheological, sensory and storage attributes of non-fat set yogurt. Foods, 9(1). https://doi.org/10.3390/foods9010061

Shi, H., Kraft, J., & Guo, M. (2020). Physicochemical and microstructural properties and probiotic survivability of symbiotic almond yogurt alternative using polymerized whey protein as a gelation agent. Journal of Food Science, 85(10), 3450–3458. https://doi.org/10.1111/1750-3841.154 31

Shi, L., Tianqi, F., Zhang, C., Deng, X., Zhou, Y., Wang, J., & Wang, L. (2023). High-protein compound yogurt with quinoa improved clinical features and metabolism of high-fat diet–induced nonalcoholic fatty liver disease in mice. Journal of Dairy Science, 106(8), 5309–5327.

https://doi.org/10.3168/jds.2022-23045

Shin, J. S., Kim, B. H., & Baik, M. Y. (2021). Applicable plant proteins and dietary fibers for simulate plant‐based yogurts. Foods,10(10). https://doi.org/10.3390/foods10102305

Shori, A. B., Aljohani, G. S., Al-zahrani, A. J., Al-sulbi, O. S., & Baba, A. S. (2022). Viability of probiotics and antioxidant activity of cashew milk-based yogurt fermented with selected strains of probiotic Lactobacillus spp. LWT, 153. https://doi.org/10.1016/j.lwt.2021.1124 82

Vieira, E. D. F., Styles, D., Sousa, S., Santos, C., Gil, A. M., Gomes, A. M., &

Vasconcelos, M. W. (2022). Nutritional, rheological, sensory characteristics and environmental impact of a yogurt like dairy drink for children enriched with lupin flour. International Journal of Gastronomy and Food Science, 30. https://doi.org/10.1016/j.ijgfs.2022.100 617

Waehrens, S. S., Faber, I., Gunn, L., Buldo, P., Bom Frøst, M., & Perez-Cueto, F..J. A. (2023). Consumers’ sensory-based cognitions of currently available and ideal plant-based food alternatives: A survey in Western, Central and Northern Europe. Food Quality and Preference, 108.

https://doi.org/10.1016/j.foodqual.2023.104875

Weiss, V., Okun, Z., & Shpigelman, A. (2023). Utilization of hydrocolloids for the stabilization of pigments from natural sources. Current Opinion in Colloid & Interface Science, 101756. https://doi.org/10.1016/j.cocis.2023.10 1756

Williams, P. A., & Phillips, G. O. (2021). Introduction to food hydrocolloids. Handbook of Hydrocolloids, 3–26. https://doi.org/10.1016/B978-0-12-820 104-6.00017-6

Wusigale, Liang, L., & Luo, Y. (2020). Casein and pectin: Structures, interactions, and applications. Trends in Food Science and Technology, 97, 391–403. https://doi.org/10.1016/j.tifs.2020.01.0 27

Xu, J., Xu, X., Yuan, Z., Hua, D., Yan, Y., Bai, M., Song, H., Yang, L., Zhu, D.,

Liu, J., Huo, D., & Liu, H. (2022). Effect of hemp protein on the physicochemical properties and flavor components of plant-based yogurt. LWT, 172. https://doi.org/10.1016/j.lwt.2022.1141 45

Xu, K., Guo, M., Du, J., & Zhang, Z. (2019). Okra polysaccharide: Effect on the texture and microstructure of set yoghurt as a new natural stabilizer. International Journal of Biological Macromolecules, 133, 117–126. https://doi.org/10.1016/j.ijbiomac.2019

.04.035

Yang, M., Li, N., Tong, L., Fan, B., Wang, L., Wang, F., & Liu, L. (2021).

Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt. LWT, 152. https://doi.org/10.1016/j.lwt.2021.1123 90

Yilmaz-Ersan, L., & Topcuoglu, E. (2022). Evaluation of instrumental and sensory measurements using multivariate analysis in probiotic yogurt enriched with almond milk. Journal of Food Science and Technology, 59(1), 133–143. https://doi.org/10.1007/s13197-021-04 994-w

Yuliarti, O., Mei, K. H., Kam Xue Ting, Z., & Yi, K. Y. (2019). Influence of combination carboxymethylcellulose and pectin on the stability of acidified milk drinks. Food Hydrocolloids, 89, 216–223.

https://doi.org/10.1016/j.foodhyd.2018. 10.040

Zeece, M. (2020). Carbohydrates. Introduction to the Chemistry of Food, 81–125. https://doi.org/10.1016/B978-0-12-809 434- 1.00003-7


Refbacks

  • There are currently no refbacks.