KOMPONEN BIOAKTIF PADA SUSU BARLEY DAN MANFAATNYA UNTUK KESEHATAN

Jolene Vanessa

Abstract


Susu berbasis nabati (plant-based milk) adalah ekstrak dari kacang-kacangan, biji-bijian, sereal atau pseudosereal yang bersifat larut air dan menyerupai kenampakan susu sapi. Salah satu jenis sereal yang telah diolah menjadi susu berbasis nabati adalah barley. Barley merupakan komoditas yang kaya akan serat pangan, fitokimia, dan vitamin. Barley juga kaya akan komponen bioaktif seperti β-glucans, asam fenolat, flavonoid, tokol, dan fitosterol. Komponen bioaktif pada barley dapat memberi manfaat positif bagi kesehatan seperti mengurangi resiko sakit jantung, kanker kolon, dan tekanan darah tinggi. Kajian ini diharapkan dapat mengenalkan susu berbasis nabati, khususnya barley, kepada masyarakat dan menjelaskan efek positif dari mengonsumsi susu barley tersebut.

Save to Mendeley


Keywords


Susu berbasis nabati; Barley; Komponen bioaktif

Full Text:

PDF

References


Alijošius, S., Švirmickas, G. J., Kliševiciute, V., Gruźauskas, R., Šašyte, V., Racevičiute-Stupeliene, A., Daukšiene, A., & Dailidavičiene, J. (2016). The chemical composition of different barley varieties grown in Lithuania. Veterinarija Ir Zootechnika, 73(95), 9–13.

Andersson, A. A. M., Lampi, A.-M., Nyström, L., Piironen, V., Li, L., Ward, J. L., Gebruers, K., Courtin, C. M., Delcour, J. A., Boros, D., Fraś, A., Dynkowska, W., Rakszegi, M., Bedő, Z., Shewry, P. R., & Åman, P. (2008). Phytochemical and dietary fiber components in barley varieties in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 56(21), 9767–9776.

Anna, C., Malgorzata, E. D., Hamulka, J., & Sadkowski, T. (2019). Nutraceutical Functions of Beta -Glucans. 70(4), 315–324.

Arifin, B., & Ibrahim, S. (2018). Structure, bioactivity, and antioxidan of flavonoid. Jurnal Zarah, 6(1), 21–29.

Azzam, M. A., & Naga, A. (2011). Optimization Of Processing Techniques. 2(10), 577–591.

Bouajila, A., Lamine, M., Hamdi, Z., Ghorbel, A., & Gangashetty, P. (2022). A Nutritional survey of local barley populations based on the mineral bioavailability, fatty acid profile, and geographic distribution of fusarium ppecies and the mycotoxin Zearalenone (ZEN). Agronomy, 12(4).

Dai, F., Wang, J., Zhang, S., Xu, Z., & Zhang, G. (2007). Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley. Food Chemistry, 105(2), 606–611.

Delgado, A., Al-Hamimi, S., Ramadan, M. F., De Wit, M., Durazzo, A., Nyam, K. L., & Issaoui, M. (2020). Contribution of tocols to food sensorial properties, stability, and overall quality. Journal of Food Quality, 2020.

Ekalu, A., & Habila, J. D. (2020). Flavonoids: isolation, characterization, and health benefits. Beni-Suef University Journal of Basic and Applied Sciences, 9(45).

Fairudz, A., & Nisa, K. (2015). Effects of dietary fiber to cholesterol level on overweight patientst. Jurnal Majority, 4(8), 121–126.

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342.

Geng, L., He, X., Ye, L., & Zhang, G. (2022). Identification of the genes associated with β-glucan synthesis and accumulation during grain development in barley. Food Chemistry: Molecular Sciences, 5(September), 100136.

Geng, L., Li, M., Xie, S., Wu, D., Ye, L., & Zhang, G. (2021). Identification of genetic loci and candidate genes related to β-glucan content in barley grain by genome-wide association study in international barley core selected collection. Molecular Breeding, 41(1), 6.

Guetouache, M., Guessas, Bettache, Medjekal, & Samir. (2014). Composition and nutritional value of raw milk. Issues in Biological Sciences and Pharmaceutical Research, 2(10), 115–122.

Idehen, E., Tang, Y., & Sang, S. (2017a). Bioactive phytochemicals in barley. Journal of Food and Drug Analysis, 25(1), 148–161. https://doi.org/10.1016/j.jfda.2016.08.002

Idehen, E., Tang, Y., & Sang, S. (2017b). Bioactive phytochemicals in barley. Journal of Food and Drug Analysis, 25(1), 148–161.

Jannah, H., Sudarma, I. M., & Andayani, Y. (2013). Analisis senyawa fitosterol dalam ekstrak buah buncis (Phaseolus vulgaris L.). Chem. Prog., 6(2), 70–75.

Kasprzak, K., Oniszczuk, T., Wójtowicz, A., Waksmundzka-Hajnos, M., Olech, M., Nowak, R., Polak, R., & Oniszczuk, A. (2018). Phenolic acid content and antioxidant properties of extruded Corn snacks enriched with kale. Journal of Analytical Methods in Chemistry, 2018.

Kim, M.-J., Hyun, J.-N., Kim, J.-A., Park, J.-C., Kim, M.-Y., Kim, J.-G., Lee, S.-J., Chun, S.-C., & Chung, I.-M. (2007). Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. Journal of Agricultural and Food Chemistry, 55(12), 4802–4809.

Kljusurić, J. G., Benković, M., & Bauman, I. (2015). Classification and processing optimization of barley milk production using NIR spectroscopy, particle size, and total dissolved solids analysis. Journal of Chemistry, 2015(June 2015).

Kowalska, I., Mołdoch, J., Pawelec, S., Podolska, G., von Cossel, M., Derycke, V., Haesaert, G., Lana, M. A., da Silva Lopes, M., Riche, A. B., Stützel, H., Hackett, R., & Oleszek, W. (2022). Environmental and cultivar variability in composition, content and biological activity of phenolic acids and alkylresorcinols of winter wheat grains from a multi-site field trial across Europe. Journal of Cereal Science, 107(April), 103527.

Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370.

Lahouar, L., Arem, A. El, & Achour, L. (2016). Bioactive compounds in whole grain barley: Nutraceutical properties and health benefits. Journal of Bioresources Valorization, 1(1), 1–15.

Lazaridou, A., Biliaderis, C., & Izydorczyk, M. (2007). Cereal Β-glucans: Structures, physical properties and physiological functions. In Functional Food Carbohydrates (pp. 1–72).

Maris, I., & Radiansyah, M. R. (2021). Review of plant-based milk utilization as a substitute for animal milk. Food Scientia : Journal of Food Science and Technology, 1(2), 103–116.

Munekata, P. E. S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F. J., Mallikarjunan, K., Roohinejad, S., & Lorenzo, J. M. (2020). Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods, 9(3), 1–16.

Nishantha, M. D. L. C., J., D. C., Xiaojun, N., & Weining, S. (2018). Beta-Glucan : An overview of its properties, health benefits, genetic background and practical applications. Scholars Journal of Agriculture and Veterinary Sciences, 5(3), 130–140.

O., A. O., T., O. O., & O., Y. A. (2014). Homogenization of milk and its effect on sensory and physico-chemical properties of yoghurt. African Journal of Food Science, 8(9), 465–470.

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47.

Park, Y. W. (2009). Bioactive Components in Milk and Dairy products. Blackwell Pusblishing.

Poli, A., Marangoni, F., Corsini, A., Manzato, E., Marrocco, W., Martini, D., Medea, G., & Visioli, F. (2021). Phytosterols, cholesterol control, and cardiovascular disease. Nutrients, 13(8), 1–13.

Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–992.

Qiao, R., Huang, C., Du, H., Zeng, G., Li, L., & Ye, S. (2011). Milk consumption and lactose intolerance in adults. Biomedical and Environmental Sciences, 24(5), 512–517.

Quinde-Axtell, Z., & Baik, B.-K. (2006). Phenolic compounds of barley grain and their implication in food product discoloration. Journal of Agricultural and Food Chemistry, 54(26), 9978–9984.

Rani, A., Sood, S., & Bhat, F. M. (2020). Physico-chemical and Functional Properties of Three Hull-less Barley (Hordeum vulgare) Varieties Grown in the High Altitude Region. 9(9), 2069–2077.

Salama, F. M. M., Azzam, M. A., Rahman, M. A. A., Naga, M. M. A.-E., & Abdl-Hameed, M. S. (2011). Optimization of processing techniques for production of oat and barley milks. Journal of Food and Dairy Science, 2(10), 577–591.

Shahidi, F., & De Camargo, A. C. (2016). Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. International Journal of Molecular Sciences, 17(10).

Smith, N. W., Dave, A. C., Hill, J. P., & McNabb, W. C. (2022). Nutritional assessment of plant-based beverages in comparison to bovine milk. Frontiers in Nutrition, 9(August). https://doi.org/10.3389/fnut.2022.957486

Stanišić, S. M., Babić, L., & Turan, J. (2010). Physical properties of barley seed (Hordeum sativum L.) and resistance to breakage fizičke osobine semena ječma (Hordeum sativum L.) i otpornost na lom. Journal on Processing and Energy in Agriculture, 14(January 2010), 116–119.

Temelli, F., Stobbe, K., Rezaei, K., & Vasanthan, T. (2013). Tocol composition and supercritical carbon dioxide extraction of lipids from Barley pearling flour. Journal of Food Science, 78(11), C1643–C1650.

Teshigawara, M. (2020). Development of next-generation nutritionally fortified plant-based milk substitutes: structural design principles. Foods, 9(421), 271–314.

Zhao, Y., Li, J., Huang, S., Li, H., Liu, Y., Gu, Q., Guo, X., & Hu, Y. (2021). Tocochromanols and chlorophylls accumulation in young pomelo (Citrus maxima) during early fruit development. Foods, 10(9), 1–15.

Zujko, M. E., & Witkowska, A. M. (2014). Antioxidant potential and polyphenol content of beverages, chocolates, nuts, and seeds. International Journal of Food Properties, 17(1), 86–92.


Refbacks

  • There are currently no refbacks.