KAJIAN KARAKTERISTIK DAN SENYAWA BIOAKTIF KISMIS BUAH ANGGUR DARI BERBAGAI METODE PENGERINGAN

Jonathan Billy Siswanto

Abstract


Buah anggur merupakan salah satu produk hasil pertanian yang telah dibudidayakan sejak zaman prasejarah. Buah anggur dibudidayakan karena memiliki banyak manfaat untuk kesehatan tubuh serta mengandung jumlah besar fitokimia dan antioksidan. Buah anggur biasanya dikonsumsi secara langsung atau dapat diolah menjadi wine, selai, jus, jelly, atau kismis. Kismis merupakan produk dari hasil proses pengeringan buah anggur. Metode pengeringan yang biasa dilakukan untuk membuat kismis yaitu pengeringan dengan matahari secara langsung (sun drying), pengeringan pada tempat teduh (shade drying), pengeringan oven (oven drying) dan pengeringan beku (freeze drying). Tujuan dari kajian ini adalah mengkaji karakteristik (warna dan tekstur) dan senyawa bioaktif (senyawa fenolik, flavonoid, dan antosianin) kismis buah anggur dari berbagai metode pengeringan. Karakteristik dan kandungan senyawa bioaktif yang terdapat pada kismis dipengaruhi oleh varietas anggur, aktivitas enzimatik dan non-enzimatik dalam kismis, lama waktu pengeringan, serta paparan cahaya yang diterima oleh kismis. Metode pengeringan yang menghasilkan kismis paling baik yaitu metode pengeringan beku dan pengeringan teduh. Metode ini menghasilkan warna dan tekstur yang lebih baik serta kandungan senyawa bioaktif yang lebih tinggi dibandingkan dengan metode pengeringan dengan matahari secara langsung dan metode pengeringan oven.


Save to Mendeley


Keywords


Kismis; Buah anggur; Karakteristik; Bioaktif

Full Text:

PDF

References


Adiletta, G., Russo, P., Senadeera, W., & Di Matteo, M. (2016). Drying characteristics and quality of grape under physical pretreatment. Journal of Food Engineering, 172, 9–18.

Adiletta, Giuseppina, Senadeera, W., Liguori, L., Crescitelli, A., Albanese, D., & Russo, P. (2015). The influence of abrasive pretreatment on hot air drying of grape. Food and Nutrition Sciences, 6(3), 355–364.

Bey, B. M., Richard, G., Meziant, L., Fauconnier, M. L., & Louaileche, H. (2017). Effects of sun-drying on physicochemical characteristics, phenolic composition and in vitro antioxidant activity of dark fig varieties. Journal of Food Processing and Preservation, 41(5), 1–8.

Balanov, P. E., Smotraeva, I. V., Abdullaeva, M. S., Volkova, D. A., & Ivanchenko, O. B. (2021). Study on resveratrol content in grapes and wine products. E3S Web of Conferences, 247, 1–5.

Carranza-Concha, J., Benlloch, M., Camacho, M. M., & Martínez-Navarrete, N. (2012). Effects of drying and pretreatment on the nutritional and functional quality of raisins. Food and Bioproducts Processing, 90(2), 243–248.

Çoklar, H., & Akbulut, M. (2017). Effect of sun, oven and freeze-drying on anthocyanins, phenolic compounds and antioxidant activity of black grape (Ekşikara) (Vitis vinifera L.). South African Journal of Enology and Viticulture, 38(2), 264–272.

da Silva, G. V., Machado, B. A. S., de Oliveira, W. P., da Silva, C. F. G., de Quadros, C. P., Druzian, J. I., de Souza Ferreira, E., & Umsza-Guez, M. A. (2020). Effect of drying methods on bioactive compounds and antioxidant capacity in grape skin residues from the new hybrid variety “BRS Magna”. Molecules, 25(16), 1–15.

de Torres, C., Díaz-Maroto, M. C., Hermosín-Gutiérrez, I., & Pérez-Coello, M. S. (2010). Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Analytica Chimica Acta, 660(1–2), 177–182.

de Torres, C., Schumacher, R., Alañón, M. E., Pérez-Coello, M. S., & Díaz-Maroto, M. C. (2015). Freeze-dried grape skins by-products to enhance the quality of

white wines from neutral grape varieties. Food Research International, 69(1), 97–105.

Doymaz, I., & Altiner, P. (2012). Effect of pretreatment solution on drying and color characteristics of seedless grapes. Food Science and Biotechnology, 21(1), 43–49.

Guiné, R. P. F., Almeida, I. C., Correia, A. C., & Gonçalves, F. J. (2015). Evaluation of the physical, chemical and sensory properties of raisins produced from grapes of the cultivar Crimson. Journal of Food Measurement and Characterization, 9(3), 337–346.

Kelebek, H., Jourdes, M., Selli, S., & Teissedre, P. L. (2013). Comparative evaluation of the phenolic content and antioxidant capacity of sun-dried raisins. Journal of the Science of Food and Agriculture, 93(12), 2963–2972.

Liu, Y., Zhao, Y., & Feng, X. (2008). Exergy analysis for a freeze-drying process. Applied Thermal Engineering, 28(7), 675–690.

Lokhande, S. M., Sahoo, A. K., Lokhande, S. M., Ranveer, R. C., & Sahoo, A. K. (2017). Effect of microwave drying on textural and sensorial properties of grape raisins. International Journal of ChemTech Research, 10(5), 938–947.

Michalczyk, M., MacUra, R., & Matuszak, I. (2009). The effect of air-drying, freeze-drying and storage on the quality and antioxidant activity of some selected berries. Journal of Food Processing and Preservation, 33(1), 11–21.

Oikonomopoulou, V. P., Krokida, M. K., & Karathanos, V. T. (2011). The influence of freeze drying conditions on microstructural changes of food products. Procedia Food Science, 1(11), 647–654.

Panagopoulou, E. A., Chiou, A., Nikolidaki, E. K., Christea, M., & Karathanos, V. T. (2019). Corinthian raisins (Vitis vinifera L., var. Apyrena) antioxidant and sugar content as affected by the drying process: a 3-year study. Journal of the Science of Food and Agriculture, 99(2), 915–922.

Pawar, D. A., Giri, S. K., Sharma, A. K., & Kotwaliwale, N. (2021). Effect of abrasive pre-treatment on drying rate of grape berries and raisin quality. Journal of Food Processing and Preservation, 45(9), 1–13.

Pawar, M. S., Pawar, V. N., Sharma, A. K., & Kamble, K. J. (2020). Characteristics of dried grapes by different drying methods. International Journal of Innovative Science and Research Technology, 5(6), 1471–1479.

Pirbalouti, A. G., Mahdad, E., & Craker, L. (2013). Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chemistry, 141(3), 2440–2449.

Prakash, O., & Kumar, A. (2013). Historical review and recent trends in solar drying systems. International Journal of Green Energy, 10(7), 690–738.

Qin, L., Wang, H., Zhang, W., Pan, M., Xie, H., & Guo, X. (2020). Effects of different drying methods on phenolic substances and antioxidant activities of seedless raisins. Lwt, 131, 109807.

Rababah, T. M., Al-U’ Datt, M., Alhamad, M., Al-Mahasneh, M., Ereifej, K., Andrade, J., Altarifi, B., Almajwal, A., & Yang, W. (2015). Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common mediterranean herbs. International Journal of Agricultural and Biological Engineering, 8(2), 145–150.

Singh, S. P., Jairaj, K. S. (2014). Influence of variation in temperature of dipping solution on drying time and colour parameters of Thompson Seedless Grapes. International Journal of Agricultural and Food Science, 4(2), 36–42.

Serratosa, M. P., Lopez-Toledano, A., Merida, J., & Medina, M. (2008). Changes in color and phenolic compounds during the raisining of grape Cv. Pedro Ximenez. In Journal of Agricultural and Food Chemistry, 56(8), 2810–2816).

Foshanji, S. A., & Foshanji, A. S. C. (2018). Effects of pretreatments and drying methods on nutritional and sensory quality of raisin. Journal of Pharmacognosy and Phytochemistry, 7(4), 3079–3083.

Shao, D., Zhang, L., Du, S., Yokoyama, W., Shi, J., Li, N., & Wang, J. (2016). Polyphenolic content and color of seedless and seeded shade dried Chinese raisins. Food Science and Technology Research, 22(3), 359–369.

Wang, J., Mu, W. S., Fang, X. M., Mujumdar, A. S., Yang, X. H., Xue, L. Y., Xie, L., Xiao, H. W., Gao, Z. J., & Zhang, Q. (2017). Pulsed vacuum drying of Thompson seedless grape: Effects of berry ripeness on physicochemical properties and drying characteristic. Food and Bioproducts Processing, 106, 117–126.

Wang, J., Mujumdar, A. S., Wang, H., Fang, X. M., Xiao, H. W., & Raghavan, V. (2021). Effect of drying method and cultivar on sensory attributes, textural profiles, and volatile characteristics of grape raisins. Drying Technology, 39(4), 495–506.

Xiao, H. W., Pang, C. Le, Wang, L. H., Bai, J. W., Yang, W. X., & Gao, Z. J. (2010). Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering, 105(2), 233–240.

Zemni, H., Sghaier, A., Khiari, R., Chebil, S., Ben Ismail, H., Nefzaoui, R., Hamdi, Z., & Lasram, S. (2017). Physicochemical, phytochemical and mycological characteristics of Italia Muscat Raisins obtained using different pre-treatments and drying techniques. Food and Bioprocess Technology, 10(3), 479–490.

Zhang, W., Pan, Z., Xiao, H., Zheng, Z., Chen, C., & Gao, Z. (2018). Pulsed Vacuum Drying (PVD) technology improves drying efficiency and quality of Poria cubes. Drying Technology, 36(8), 908–921.


Refbacks

  • There are currently no refbacks.