ALTERNATIF PROTEASE PADA ENZIM RENNET DALAM PEMBUATAN KEJU
Abstract
Save to Mendeley
Keywords
Full Text:
PDFReferences
Adhikari, B., Bhattarai, R., Katuwal, & Das, S. (2021). Effects of ginger protease on quality of mozzarella cheese. Approaches in Poultry, Dairy & Veterinary Sciences, 8(5), 835–845.
Aktayeva, S., Akishev, Z., & Khassenov, B. (2018). Proteolytic Enzymes in Cheese Making. Eurasian Journal of Applied Biotechnology, 1.
Al-Baarri, A. N. M., Legowo, A. M., Arum, S. K., & Hayakawa, S. (2018). Extending shelf life of indonesian soft milk cheese (dangke) by lactoperoxidase system and lysozyme. International Journal of Food Science, 2018. https://doi.org/10.1155/2018/430539
Alihanoğlu, S., Ektiren, D., Akbulut Çakır, Ç., Vardin, H., Karaaslan, A., & Karaaslan, M. (2018). Effect of Oryctolagus cuniculus (rabbit) rennet on the texture, rheology, and sensory properties of white cheese. Food Science and Nutrition, 6(4), 1100–1108.
Aljammas, H. A., Al Fathi, H., & Alkhalaf, W. (2018). Study the influence of culture conditions on rennin production by Rhizomucor miehei using solid-state fermentations. Journal of Genetic Engineering and Biotechnology, 16(1), 213–216.
Amaro-Hernández, J. C., Olivas, G. I., Acosta-Muñiz, C. H., Gutiérrez-Méndez, N., & Sepulveda, D. R. (2020). Structure rearrangement during rennet coagulation of milk modifies curd density. Journal of Dairy Science, 103(4), 3088–3094. https://doi.org/10.3168/jds.2019-1699
Arango, O., Trujillo, A. J., & Castillo, M. (2018). Monitoring the effect of inulin, protein, and calcium on milk coagulation phases using a fibre optic sensor. International Dairy Journal, 81, 80– 86. https://doi.org/10.1016/j.idairyj.2018.01.015
Arlene, A., Kristijanti, A. P., & Phani, A. (2014). The Effects of Milk Types (Cow, Peanut, Red Bean) And Enzyme Types (Rennet, Papain, Bromelain) Towards The Quantity And Quality of Cheddar Cheese. International Conference on Engineering Technology and Industrial Application, 101–105.
Bala, M., Ismail, N. A., Mel, M., Jami, M. S., Mohd Salleh, H., & Amid, A. (2012). Bromelain production: Current trends and perspective. Archives Des Sciences, 65(11), 369–399.
Beltrán-Espinoza, J. A., Domínguez-Lujan, B., Gutiérrez-Méndez, N., Chávez-Garay, D. R., Nájera-Domínguez, C., & Leal-Ramos,
M. Y. (2021). The impact of chymosin and plant-derived proteases on the acid-induced gelation of milk. International Journal of Dairy Technology, 74(2), 297–306. https://doi.org/10.1111/1471-0307.12760
Corredig, M., & Salvatore, E. (2016). Enzymatic Coagulation of Milk BT - Advanced Dairy Chemistry (P. L. H. McSweeney & J. A. O’Mahony (eds.); pp. 287–307). Springer New York.
Corzo, C. A., Waliszewski, K. N., & Welti-Chanes, J. (2012). Pineapple fruit bromelain affinity to different protein substrates. Food Chemistry, 133(3),631–635.https://doi.org/10.1016/j.foodchem.2011.05.119
da Silva, A. C., Nascimento, T. C. E. da S., da Silva, S. A., Herculano, P. N., & Moreira, K. A. (2013). Potential of quixaba (Sideroxylon obtusifolium) latex as a milk-clotting agent. Food Science and Technology, 33(3), 494–499. https://doi.org/10.1590/S0101-20612013005000075
Fachraniah, Rihayat, T., Zaini, H., Nita, D., & Fazil, M. (2019). Papain Enzyme and Lemon as Coagulants in Cottage Cheese. IOP Conference Series: Materials Science and Engineering, 536(1). https://doi.org/10.1088/1757-899X/536/1/012103
FAO. (2021). Dairy Market Review: Overview of global dairy market development. In Food and Agriculture Organization of the United Nations.
Gagaoua, M., Ziane, F., Nait Rabah, S., Boucherba, N., Ait Kaki El- Hadef El-Okki, A., Bouanane-Darenfed, A., & Hafid, K. (2017). Three phase partitioning, a scalable method for the purification and recovery of cucumisin, a milk-clotting enzyme, from the juice of Cucumis melo var. reticulatus. International Journal of Biological Macromolecules, 102, 515–525. https://doi.org/10.1016/j.ijbiomac.2017.04.060
Gómez-García, R., Campos, D. A., Aguilar, C. N., Madureira, A. R., & Pintado, M. (2021). Biological protein precipitation: A green process for the extraction of cucumisin from melon (Cucumis melo L. inodorus) by-products. Food Hydrocolloids, 116 (February).
Grassi, S., Strani, L., Casiraghi, E., & Alamprese, C. (2019). Control and monitoring of milk renneting using FT-NIR spectroscopy as a process analytical technology tool. Foods, 8(9). https://doi.org/10.3390/foods8090405
Hovjecki, M., Miloradovic, Z., Barukčić, I., Blažić, M., & Miocinovic, J. (2022). Rheological Properties of Goat Milk Coagulation as Affected by Rennet Concentration, pH and Temperature. Fermentation,8(6). https://doi.org/10.3390/fermentation8060291
Jensen, H. B., Pedersen, K. S., Johansen, L. B., Poulsen, N. A., Bakman, M., Chatterton, D. E. W., & Larsen, L. B. (2015). Genetic variation and posttranslational modification of bovine κ-casein: Effects on caseino-macropeptide release during renneting. Journal of Dairy Science, 98(2), 747–758. https://doi.org/10.3168/jds.2014-867
Komansilan, S., Rosyidi, D., Radiati, L. E., Purwadi, P., & Evanuarini, H. (2021). The physicochemical characteristics and protein profile of cottage cheese produced by using crude bromelain enzyme extracted from ananas comosus. Current Research in Nutrition and Food Science, 9(2), 578–587. https://doi.org/10.12944/CRNFSJ.9.2.21
Li, L., Chen, H., Lü, X., Gong, J., & Xiao, G. (2022). Effects of papain concentration, coagulation temperature, and coagulation time on the properties of model soft cheese during ripening. Lwt, 161(August 2021), 113404.
https://doi.org/10.1016/j.lwt.2022.113404
Mamo, A., & Balasubramanian, N. (2018). Calf rennet production and its performance optimization. Journal of Applied and Natural Science, 10(1),247–252.
https://doi.org/10.31018/jans.v10i1.1612
Martí-De Olives, A., Peris, C., & Molina, M. P. (2020). Effect of subclinical mastitis on the yield and cheese-making properties of ewe’s milk. Small Ruminant Research, 184.
Mazorra-Manzano, M. A., Perea-Gutiérrez, T. C., Lugo-Sánchez, M. E., Ramirez-Suarez, J. C., Torres-Llanez, M. J., González- Córdova, A. F., & Vallejo-Cordoba, B. (2013). Comparison of the milk-clotting properties of three plant extracts. Food Chemistry, 141(3), 1902–1907.
Murayama, K., Kato-Murayama, M., Hosaka, T., Sotokawauchi, A., Yokoyama, S., Arima, K., & Shirouzu, M. (2012). Crystal structure of cucumisin, a subtilisin-like endoprotease from cucumis melo L. Journal of Molecular Biology, 423(3), 386– 396. https://doi.org/10.1016/j.jmb.2012.07.013
Nath, A., Eren, B. A., Zinia Zaukuu, J. L., Koris, A., Pásztorné- Huszár, K., Szerdahelyi, E., & Kovacs, Z. (2022). Detecting the bitterness of milk-protein-derived peptides using an electronic tongue. Chemosensors, 10(6). https://doi.org/10.3390/chemosensors10060215
Nicosia, F. D., Puglisi, I., Pino, A., Caggia, C., & Randazzo, C. L. (2022). Plant milk-clotting enzymes for cheesemaking. Foods, 11(6). https://doi.org/10.3390/foods11060871
Prihatini, I., & Dewi, R. K. (2021). Kandungan Enzim Papain pada Pepaya (Carica papaya L) Terhadap Metabolisme Tubuh. Jurnal Tadris IPA Indonesia, 1(3), 449–458. https://doi.org/10.21154/jtii.v1i3.312
Sandra, S., Ho, M., Alexander, M., & Corredig, M. (2012). Effect of soluble calcium on the renneting properties of casein micelles as measured by rheology and diffusing wave spectroscopy. Journal of Dairy Science, 95(1), 75–82. https://doi.org/10.3168/jds.2011-4713
Sheryl, A. F., & Setiadi. (2020). Improving the texture of cheese product from cow’s milk through the coagulation process using a combination of papain and transglutaminase enzyme. AIP Conference Proceedings, 2255.
Vergara-álvarez, W., Arteaga-Márquez, M., & Hernández-Ramos, E.J. (2019). Sensory acceptance and shelf life of fresh cheese made with dry bromelain extract as a coagulating agent. DYNA, 86(210), 270–275.
Refbacks
- There are currently no refbacks.