PEMANFAATAN ANTOSIANIN SEBAGAI INDIKATOR PADA SMART FILM PACKAGING UNTUK MENDETEKSI KESEGARAN PRODUK PANGAN

Yessica Yessica

Abstract


Antosianin merupakan pewarna alami yang larut dalam air dan sensitif terhadap perubahan nilai pH lingkungan. Pigmen antosianin dapat diperoleh dari ekstrak buah-buahan, sayuran, dan bunga. Antosianin termasuk ke dalam kelompok senyawa bioaktif dan senyawa fenolik yang memberikan warna ungu, merah, biru, dan oranye. Produk pangan rentan mengalami kerusakan selama proses penanganan yang kurang baik. Kerusakan produk pangan umumnya disebabkan oleh kelompok mikroorganisme. Penggunaan indikator antosianin pada smart film packaging bertujuan untuk memonitor kesegaran bahan pangan yang dikemas secara “real time”. Indikator antosianin dapat menujukkan tingkat kesegaran produk pangan berdasarkan perubahan warna film yang dipicu oleh perubahan nilai pH lingkungan. Beberapa penelitian terbaru meneliti tentang pengembangan smart film packaging berbasis pigmen antosinain sebagai indikator serta penggunaan polimer ramah lingkungan sebagai bahan baku film. Tujuan dari review ini adalah mengulas pemanfaatan pigmen antosianin sebagai indikator smart film packaging dalam upaya meningkatkan keamanan pangan dan mempertahankan kualitas produk pangan.

Save to Mendeley


Keywords


Antosianin; Pewarna alami; Smart film packaging; Biopolimer; Indikator pH; Indikator kesegaran

Full Text:

PDF

References


Ahmad, S., Jahan, Z., Sher, F., Niazi, M. B. K., Noor, T., Hou, H., Azhar, O., & Sher, E. K. (2022). Polyvinyl alcohol and aminated cellulose nanocrystal membranes with improved interfacial compatibility for environmental applications. Environmental Research, 214,113793.https://doi.org/10.1016/j.envres.2022.113793

Ali, A., Cottrell, J. J., & Dunshea, F. R. (2022). Identification and characterization of anthocyanins and non- anthocyanin phenolics from Australian native fruits and their antioxidant , antidiabetic , and anti-Alzheimer potential. Food Research International, 1–37.

Alizadeh-Sani,M., Tavassoli, M., McClements, D. J., & Hamishehkar, H. (2021). Multifunctional halochromic packaging materials: Saffron petal anthocyanin loaded-chitosan nanofiber/methyl cellulose matrices. Food Hydrocolloids, 111,106237. https://doi.org/10.1016/j.foodhyd.2020.106237

Alizadeh-Sani, Mahmood, Tavassoli, M., Mohammadian, E., Ehsani, A., Khaniki, G. J., Priyadarshi, R., & Rhim, J. W. (2021). pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. International Journal of Biological Macromolecules,166,741–750. https://doi.org/10.1016/j.ijbiomac.2020.10.231

Alqahtani, N., Alnemr, T., & Ali, S. (2021). Development of low-cost biodegradable films from corn starch and date palm pits (Phoenix dactylifera). Food Bioscience, 42, 101199. https://doi.org/10.1016/j.fbio.2021.101199

Asada, T., Koi, Y., & Tamura, H. (2015). New technique to isolate anthocyanins from Delaware grapes by forming an aluminium complex using a Discovery DPA-6S. Food Chemistry, 166, 10–16. https://doi.org/10.1016/j.foodchem.2014.05.100

Chayavanich, K., Thiraphibundet, P., & Imyim, A. (2020). Biocompatible film sensors containing red radish extract for meat spoilage observation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 226, 117601.https://doi.org/10.1016/j.saa.2019.117601

Chen, M., Yan, T., Huang, J., Zhou, Y., & Hu, Y. (2021). Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. International Journal of Biological Macromolecules, 179, 90–100. https://doi.org/10.1016/j.ijbiomac.2021.02.170

Cheng, H., Wu, W., Chen, J., Pan, H., Xu, E., Chen, S., Ye, X., & Chen, J. (2022). Establishment of anthocyanin fingerprint in black wolfberry fruit for quality and geographical origin identification. LWT, 157, 1–9. https://doi.org/10.1016/j.lwt.2022.113080

Dong, Z., Xu, F., Ahmed, I., Li, Z., & Lin, H. (2018). Characterization and preservation performance of active polyethylene films containing rosemary and cinnamon essential oils for Pacific white shrimp packaging. Food Control, 92,37–46. https://doi.org/10.1016/j.foodcont.2018.04.052

Gasti, T., Dixit, S., D’souza, O. J., Hiremani, V. D., Vootla, S. K., Masti, S. P., Chougale, R. B., & Malabadi, R. B. (2021). Smart biodegradable films based on chitosan/methylcellulose containing Phyllanthus reticulatus anthocyanin for monitoring the freshness of fish fillet. International Journal of Biological Macromolecules, 187,451–461. https://doi.org/10.1016/j.ijbiomac.2021.07.128

Ge, Y., Li, Y., Bai, Y., Yuan, C., Wu, C., & Hu, Y. (2020). Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. International Journal of Biological Macromolecules, 155, 1296–1306.https://doi.org/10.1016/j.ijbiomac.2019.11.101

Ghoshal, G. (2018). Recent trends in active, smart, and intelligent packaging for food products. In Food Packaging and Preservation. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811516-9.00010-5

Goodarzi, M. M., Moradi, M., Tajik, H., Forough, M., Ezati, P., & Kuswandi, B. (2020). Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. International Journal of Biological Macromolecules, 153. https://doi.org/10.1016/j.ijbiomac.2020.03.014

Granato, D., Fidelis, M., Haapakoski, M., dos Santos Lima, A., Viil, J., Hellström, J., Rätsep, R., Kaldmäe, H., Bleive, U., Azevedo, L., Marjomäki, V., Zharkovsky, A., & Pap, N. (2022). Enzyme-assisted extraction of anthocyanins and other phenolic compounds from blackcurrant (Ribes nigrum L.) press cake: From processing to bioactivities. Food Chemistry, 391, 1–11.

Holman, B. W. B., Bekhit, A. E. D. A., Waller, M., Bailes, K. L., Kerr, M. J., & Hopkins, D. L. (2021). The association between total volatile basic nitrogen (TVB-N) concentration and other biomarkers of quality and spoilage for vacuum packaged beef. Meat Science, 179,1–11. https://doi.org/10.1016/j.meatsci.2021.108551

Hoqani, H. Ali Said Al, Hamed Khalifa Al Shaqsi, N., Amzad Hossin, M., & Abdullah Al Sibani, M. (2021). Structural characterization of polymeric chitosan and mineral from Omani shrimp shells. Water-Energy Nexus, 4, 199–207. https://doi.org/10.1016/j.wen.2021.11.002

Jakubowska, E., Gierszewska, M., Szydłowska-Czerniak, A., Nowaczyk, J., & Olewnik-Kruszkowska, E. (2022). Development and characterization of active packaging films based on chitosan, plasticizer, and quercetin for repassed oil storage. Food Chemistry, 399,1–14. https://doi.org/10.1016/j.foodchem.2022.133934

Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Li, S., Luo, Q., Li, M., Liu, X., Chen, A., Wang, Z., & Zhang, Z. (2019). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.12.024

Kang, S., Wang, H., Guo, M., Zhang, L., Chen, M., Jiang, S., Li, X., & Jiang, S. (2018). Ethylene-vinyl alcohol copolymer-montmorillonite multilayer barrier film coated with mulberry anthocyanin for freshness monitoring. Journal of Agricultural and Food Chemistry, 66(50), 13268–13276. https://doi.org/10.1021/acs.jafc.8b05189

Kang, S., Wang, H., Xia, L., Chen, M., Li, L., Cheng, J., Li, X., & Jiang, S. (2020). Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydrate Polymers, 229. https://doi.org/10.1016/j.carbpol.2019.115402

Kim, H. E., Lee, J. J., Lee, M. J., & Kim, B. S. (2019). Analysis of microbiome in raw chicken meat from butcher shops and packaged products in South Korea to detect the potential risk of foodborne illness. Food Research International, 122,517–527. https://doi.org/10.1016/j.foodres.2019.05.032

Li, W., Gong, P., Ma, H., Xie, R., Wei, J., & Xu, M. (2022). Ultrasound treatment degrades, changes the color, and improves the antioxidant activity of the anthocyanins in red radish. Lwt, 165, 1–8.https://doi.org/10.1016/j.lwt.2022.113761

Li, Y., Wu, K., Wang, B., & Li, X. (2021). Colorimetric indicator based on purple tomato anthocyanins and chitosan for application in intelligent packaging. International Journal of Biological Macromolecules, 174, 370–376. https://doi.org/10.1016/j.ijbiomac.2021.01.182

Ma, N. L., Peng, W., Soon, C. F., Noor Hassim, M. F., Misbah, S., Rahmat, Z., Yong, W. T. L., & Sonne, C. (2021). Covid-19 pandemic in the lens of food safety and security. Environmental Research, 193, 1–9. https://doi.org/10.1016/j.envres.2020.110405

Martins, P. C., Latorres, J. M., & Martins, V. G. (2022). Impact of starch nanocrystals on the physicochemical, thermal and structural characteristics of starch-based films. LWT, 156, 113041. https://doi.org/10.1016/j.lwt.2021.113041

Merz, B., Capello, C., Leandro, G. C., Moritz, D. E., Monteiro, A. R., & Valencia, G. A. (2020). A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. International Journal of Biological Macromolecules, 153, 625–632. https://doi.org/10.1016/j.ijbiomac.2020.03.048

Ochoa-Yepes, O., Di Giogio, L., Goyanes, S., Mauri, A., & Famá, L. (2019). Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydrate Polymers, 208,221–231. https://doi.org/10.1016/j.carbpol.2018.12.030

Oyeoka, H. C., Ewulonu, C. M., Nwuzor, I. C., Obele, C. M., & Nwabanne, J. T. (2021). Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. Journal of Bioresources and Bioproducts, 6(2), 168–185. https://doi.org/10.1016/j.jobab.2021.02.009

Pakizeh, M., Moradi, A., & Ghassemi, T. (2021). Chemical extraction and modification of chitin and chitosan from shrimp shells. European Polymer Journal,159,110709. https://doi.org/10.1016/j.eurpolymj.2021.110709

Petruzzi, L., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2017). Microbial Spoilage of Foods: Fundamentals. In The Microbiological Quality of Food: Foodborne Spoilers. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100502-6.00002-9

Qin, Y., Liu, Y., Yong, H., Liu, J., Zhang, X., & Liu, J. (2019). Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. International Journal of Biological Macromolecules, 134, 80–90. https://doi.org/10.1016/j.ijbiomac.2019.05.029

Singh, Sudarshan, Nwabor, O. F., Syukri, D. M., & Voravuthikunchai, S. P. (2021). Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. International Journal of Biological Macromolecules, 182,1015–1025. https://doi.org/10.1016/j.ijbiomac.2021.04.027

Singh, Suman, Gaikwad, K. K., & Lee, Y. S. (2018). Anthocyanin – A Natural Dye for Smart Food Packaging Systems. Korean Journal of Packaging Science and Technology, 24(3), 167–180. https://doi.org/10.20909/kopast.2018.24.3.167

Song, X. C., Canellas, E., Wrona, M., Becerril, R., & Nerin, C. (2020). Comparison of two antioxidant packaging based on rosemary oleoresin and green tea extract coated on polyethylene terephthalate for extending the shelf life of minced pork meat. Food Packaging and Shelf Life, 26,100588. https://doi.org/10.1016/j.fpsl.2020.100588

Souza, V. G. L., Pires, J. R. A., Vieira, É. T., Coelhoso, I. M., Duarte, M. P., & Fernando, A. L. (2018). Shelf Life Assessment of Fresh Poultry Meat Packaged in Novel Bionanocomposite of Chitosan/ Montmorillonite Incorporated with Ginger Essential Oil. Coatings, 8(5), 1–17.

Tirtashi, F. E., Moradi, M., Tajik, H., Forough, M., Ezati, P., & Kuswandi, B. (2019). Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging. International Journal of Biological Macromolecules, 136, 920–926. https://doi.org/10.1016/j.ijbiomac.2019.06.148

Vilas, C., Mauricio-Iglesias, M., & García, M. R. (2020). Model-based design of smart active packaging systems with antimicrobial activity. Food Packaging and Shelf Life, 24, 1–11. https://doi.org/10.1016/j.fpsl.2019.100446

Vo, T. V., Dang, T. H., & Chen, B. H. (2019). Synthesis of intelligent pH indicative films from chitosan/poly(vinyl alcohol)/anthocyanin extracted from red cabbage. Polymers, 11(7), 1–12. https://doi.org/10.3390/polym11071088

Wu, C., Sun, J., Zheng, P., Kang, X., Chen, M., Li, Y., Ge, Y., Hu, Y., & Pang, J. (2019). Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydrate Polymers, 222, 115006. https://doi.org/10.1016/j.carbpol.2019.115006

Wu, L. T., Tsai, I. L., Ho, Y. C., Hang, Y. H., Lin, C., Tsai, M. L., & Mi, F. L. (2021). Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydrate Polymers,254. https://doi.org/10.1016/j.carbpol.2020.117410

Yang, D., Li, M. M., Wang, W. J., Zheng, G. D., Yin, Z. P., Chen, J. G., & Zhang, Q. F. (2022). Separation and purification of anthocyanins from Roselle by macroporous resins. LWT, 161, 1–8. https://doi.org/10.1016/j.lwt.2022.113371

Zeng, P., Chen, X., Qin, Y. R., Zhang, Y. H., Wang, X. P., Wang, J. Y., Ning, Z. X., Ruan, Q. J., & Zhang, Y. S. (2019). Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Research International, 126. https://doi.org/10.1016/j.foodres.2019.108604

Zhai, X., Wang, X., Zhang, J., Yang, Z., Sun, Y., Li, Z., Huang, X., Holmes, M., Gong, Y., Povey, M., Shi, J., & Zou, X. (2020). Extruded low density polyethylene-curcumin film: A hydrophobic ammonia sensor for intelligent food packaging. Food Packaging and Shelf Life, 26, 100595. https://doi.org/10.1016/j.fpsl.2020.100595

Zhang, C., Sun, G., Cao, L., & Wang, L. (2020). Accurately intelligent film made from sodium carboxymethyl starch/κ-carrageenan reinforced by mulberry anthocyanins as an indicator. Food Hydrocolloids, 108. https://doi.org/10.1016/j.foodhyd.2020.106012

Zhang, M., Chen, H. zhi, Bhandari, B., & Yang, C. hui. (2019). Development of a novel colorimetric food package label for monitoring lean pork freshness. Lwt, 99, 43–49. https://doi.org/10.1016/j.lwt.2018.09.048

Zhao, L., Liu, Y., Zhao, L., & Wang, Y. (2022). Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. Journal of Agriculture and Food Research, 9(July), 100340. https://doi.org/10.1016/j.jafr.2022.100340

Zia, J., Paul, U. C., Heredia-Guerrero, J. A., Athanassiou, A., & Fragouli, D. (2019). Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. Polymer, 175, 137–145.


Refbacks

  • There are currently no refbacks.