KARAKTERISTIK EDIBLE FILM DARI BAHAN HIDROKOLOID

Angelina Angelina

Abstract


Edible film merupakan kemasan bahan pangan yang terbuat dari bahan hidrokoloid yang dapat dimakan. Bahan pembuatan edible film sangat mempengaruhi ketebalan, laju transmisi uap air (WVTR), kuat tarik, dan juga elongasi. Syarat-syarat edible film ini merupakan faktor yang penting karena kemasan edible film digunakan sebagai pelindung produk makanan dari kerusakan mekanis maupun kerusakan biokimia. Tujuan dari mini review ini adalah untuk mengkaji berbagai informasi mengenai bahan hidrokoloid yang paling baik untuk dijadikan dalam pembuatan edible film. Ketebalan edible film akan memengaruhi kekuatan tarik dan elongasinya. Semakin rendah nilai WVTR, kualitas edible film akan meningkat. Selain tu, semakin besar nilai kuat tarik dan juga elongasi suatu film akan semakin baik kualitas edible film tersebut. Gelatin kulit ayam, gelatin tulang ikan patin, gelatin kulit babi, pati tapioka, dan pati jagung merupakan bahan yang baik untuk digunakan dalam pembuatan edible film. Selain itu, edible film dari pati tapioka memiliki kuat tarik dan elongasi paling baik.

Save to Mendeley


Keywords


Edible film; Hidrokoloid; Gelatin; Rumput laut; Pati

Full Text:

PDF

References


Abdelmalek, B. E., Gómez-Estaca, J., Sila, A., Martinez-Alvarez, O., Gómez-Guillén, M. C., Chaabouni-Ellouz, S., Ayadi, M. A., & Bougatef, A. (2016). Characteristics and functional properties of gelatin extracted from squid (Loligo vulgaris) skin. Lwt-Food Science and Technology, 65, 924–931. https://doi.org/10.1016/j.lwt.2015.09.024

Aisyah, Y., Irwanda, L. P., Haryani, S., & Safriani, N. (2018). Characterization of corn starch-based edible film incorporated with nutmeg oil nanoemulsion. The 7th AIC-ICMR on Sciences and Engineering, 352, 1–7. https://doi.org/10.1088/1757-899X/352/1/012050

Beaumont, M., Tran, R., Vera, G., Niedrist, D., Rousset, A., Pierre, R., Shastri, V. P., & Forget, A. (2021). Hydrogel-forming algae polysaccharides: From seaweed to biomedical applications. Biomacromolecules, 22(3), 1027–1052. https://doi.org/10.1021/acs.biomac.0c01406

Cebrián-Lloret, V., Metz, M., Martínez-Abad, A., Knutsen, S. H., Ballance, S., López-Rubio, A., & Martínez-Sanz, M. (2022). Valorization of alginate-extracted seaweed biomass for the development of cellulose-based packaging films. Algal Research, 61, 1–14 https://doi.org/10.1016/j.algal.2021.102576

Freeman, A. A., Wan, D., & Bertolin, C. (2021). Examining the effect of indentation separation on the properties of proteinaceous adhesive films made bone gelatine. Procedia Structural Integrity, 33, 265–278. https://doi.org/10.1016/j.prostr.2021.10.033

Govindaswamy, R., Robinson, J. S., Geevaretnam, J., & Pandurengan, P. (2018). Physico-functional and anti-oxidative properties of carp swim bladder gelatin and brown seaweed fucoidan based edible films. Journal of Packaging Technology and Research, 2(1), 77–89. https://doi.org/10.1007/s41783-017-0024-z

Gregersen, S., Kongsted, A. S. H., Nielsen, R. B., Hansen, S. S., Lau, F. A., Rasmussen, J. B., Holdt, S. L., & Jacobsen, C. (2021). Enzymatic extraction improves intracellular protein recovery from the industrial carrageenan seaweed Eucheuma denticulatum revealed by quantitative, subcellular protein profiling: A High potential source of functional food ingredients. Food Chemistry: X, 12, 1–13. https://doi.org/10.1016/j.fochx.2021.100137

Guzman-puyol, S., Benítez, J. J., & Heredia-Guerrero, J. A. (2022). Transparency of polymeric food packaging materials. Food Research International, 161(July). https://doi.org/10.1016/j.foodres.2022.111792

Hidayati, S., Zulferiyenni, Maulidia, U., Satyajaya, W., & Hadi, S. (2021). Effect of glycerol concentration and carboxy methyl cellulose on biodegradable Film characteristics of seaweed waste. Heliyon, 7(8), 1–8. https://doi.org/10.1016/j.heliyon.2021.e07799

JIS. (2017). Japanese Standards Association.

Khalaji, S., Manafi, M., Olfati, Z., Hedyati, M., Latifi, M., & Veysi, A. (2016). Replacing soybean meal with gelatin extracted from cow skin and corn protein concentrate as a protein source in broiler diets. Poultry Science, 95(2), 287–297. https://doi.org/10.3382/ps/pev330

Killekar, V. C., Koli, J. M., Pujari, K. H., & Pakhmode, P. K. (2017). Functional properties of gelatin extractd from skin of black kingfish (Rachycentron canadus) at 40 Degree C. International Journal of Processing and Post Harvest Technology, 8(1), 1–9. https://doi.org/10.15740/has/ijppht/8.1/1-9

Kowalczyk, D., Szymanowska, U., Skrzypek, T., Basiura-Cembala, M., Materska, M., & Łupina, K. (2021). Corn starch and methylcellulose edible films incorporated with fireweed (Chamaenerion ngustifolium L.) Extract: Comparison of physicochemical and antioxidant properties. International Journal of Biological Macromolecules, 190, 969–977. https://doi.org/10.1016/j.ijbiomac.2021.09.079

Lastra-Ripoll, S. E., Quintana, S. E., & García-Zapateiro, L. A. (2022). Chemical, technological, and rheological properties of hydrocolloids from sesame (Sesamum indicum) with potential. Food Applicationsi, 15(10), 1–10. https://doi.org/10.1016/j.arabjc.2022.104146

Nemat, B., Razzaghi, M., Bolton, K., & Rousta, K. (2022). Design affordance of plastic food packaging for consumer sorting behavior. Resources, Conservation and Recycling, 177. https://doi.org/10.1016/j.resconrec.2021.105949

Ningrum, R. S., Sondari, D., Amanda, P., Widyaningrum, B. A., Burhani, D., Akbar, F., & Sampora, Y. (2020). Properties of edible film from modified sago starch precipitated by butanol. Jurnal Sains Materi Indonesia, 21(4), 164–169. https://doi.org/10.17146/jsmi.2020.21.4.6022

Nurilmala, M., Suryamarevita, H., Husein Hizbullah, H., Jacoeb, A. M., & Ochiai, Y. (2022). Fish skin as a biomaterial for halal collagen and gelatin. Saudi Journal of Biological Sciences, 29(2), 1100–1110. https://doi.org/10.1016/j.sjbs.2021.09.056

Rahmawati, S., Pathuddin, Nuryanti, S., Dia Afrianti Sangkota, V., Afadil, Anggraini, & Syawaliah, N. (2022). Characteristics and antioxidants of edible film from durian seeds (Durio zibethinus) with additions to rosella flower extract (Hibiscus sabdariffa L.). Materials Today: Proceedings, 65, 3109–3115. https://doi.org/10.1016/j.matpr.2022.07.162

Raj, T. S., Nishanthi, P., Suji, K. H. G., & Ann, H. (2018). Seaweed extract as a biostimulant and a pathogen controlling agent in plants. International Journal of Tropical Agriculture, 36(3), 563–580. http:www.serialsjournals.com

Santoso, R. A., & Atma, Y. (2020). Physical properties of edible films from pangasius catfish bone gelatin-breadfruits strach with different formulations. Indonesian Food Science & Technology Journal, 3(2), 42–47. https://doi.org/10.22437/ifstj.v3i2.949

Schmaltz, E., Melvin, E. C., Diana, Z., Gunady, E. F., Rittschof, D., Somarelli, J. A., Virdin, J., & Dunphy-Daly, M. M. (2020). Plastic pollution solutions: Emerging technologies to prevent and collect marine plastic pollution. Environment International, 144. https://doi.org/10.1016/j.envint.2020.106067

Semwal, A., Ambatipudi, K., & Navani, N. K. (2022). Development and characterization of sodium caseinate based probiotic edible film with chia mucilage as a protectant for the safe delivery of probiotics in functional bakery. Food Hydrocolloids for Health, 2. https://doi.org/10.1016/j.fhfh.2022.100065

Shroti, G. K., & Saini, C. S. (2022). Development of edible films from protein of Brewer’s spent grain: Effect of pH and protein concentration on physical, mechanical and barrier properties of films. Applied Food Research, 2(1), 1–8. https://doi.org/10.1016/j.afres.2022.100043

Siah, W. M., Aminah, A., & Ishak, A. (2015). Edible films from seaweed (Kappaphycus alvarezii). International Food Research Journal, 22(6), 2230–2236.

Sompie, M., Surtijono, S. E., & Junus, C. (2018). The effect of native chicken legskin gelatin concentration On physical characteristics and molecular weight of edible film. 1st International Conference on Food and Agriculture, 207(1), 1–6. https://doi.org/10.1088/1755-1315/207/1/012053

Sompie, M., & Triasih, A. (2018). Effect of extraction temperature on characteristics of chicken legskin gelatin. IOP Conference Series: Earth and Environmental Science, 102(1), 5–9. https://doi.org/10.1088/1755-1315/102/1/012089

Sompiel, M., Triatmojo, S., Pertiwiningrum, A., & Pranoto, Y. (2014). Characteristics of edible film from pigskin gelatin. The 16th AAAP ANimal Science, 11, 2648–2651. https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

Tavares, K. M., Campos, A. de, Luchesi, B. R., Resende, A. A., Oliveira, J. E. de, & Marconcini, J. M. (2020). Effect of carboxymethyl cellulose concentration on mechanical and water vapor barrier properties of corn starch films. Carbohydrate Polymers, 246, 1–10. https://doi.org/10.1016/j.carbpol.2020.116521

Tümerkan, A., Tuğce, E., Cansu, Ü., Boran, G., Regenstein, J. Mac, & Özoğul, F. (2019). Physiochemical and functional properties of gelatin obtained from tuna, frog and chicken skins. Food Chemistry, 287, 273–279. https://doi.org/10.1016/j.foodchem.2019.02.088

Wang, Y., Wang, J., Sun, Q., Xu, X., Li, M., & Xie, F. (2022). Hydroxypropyl methylcellulose hydrocolloid systems: effect of hydroxypropy group content on the phase structure, rheological properties and film characteristics. Food Chemistry, 379. https://doi.org/10.1016/j.foodchem.2022.132075

Wardhani, D. H., Rahmawati, E., Arifin, G. T., & Cahyono, H. (2017). Characteristics of demineralized gelatin from lizardfish (Saurida spp.) scales using NaOH-NaCl solution. Jurnal Bahan Alam Terbarukan, 6(2), 132–142. https://doi.org/10.15294/jbat.v6i2.962

Wu, J., Sun, X., Guo, X., Ge, S., & Zhang, Q. (2017). Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4), 185–192. https://doi.org/10.1016/j.aaf.2017.06.004

Wulandari, Y., Harini, N., & Warkoyo. (2019). Characterization of edible film from starch of taro (Colocasia esculenta (L.) Schott) with addition of chitosan on dodol substituted seaweed (Eucheuma cottonii L.). Food Technology and Halal Science Journal, 1(1), 22–32. https://doi.org/10.22219/fths.v1i1.7544

Zhao, L., Liu, Y., Zhao, L., & Wang, Y. (2022). Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. Journal of Agriculture and Food Research, 9(July). https://doi.org/10.1016/j.jafr.2022.100340

Zhu, W., Zhang, D., Liu, X., Ma, T., He, J., Dong, Q., Din, Z., Zhou, J., Chen, L., Hu, Z., & Cai, J. (2022). Improving the hydrophobicity and mechanical properties of starch nanofibrous films by electrospinning and cross-linking for food packaging applications. LWT, 169(April), 1–10.


Refbacks

  • There are currently no refbacks.